Background The ergogenic properties of acute caffeine (CAF) and sodium bicarbonate (NaHCO3) ingestion on athletic performance have been previously investigated. However, each sport has unique physiological and technical characteristics which warrants optimizing supplementations strategies for maximizing performance. This study examined the effects of CAF and NaHCO3 ingestion on physiological responses and rate of perceived exertion during a Karate-specific aerobic test (KSAT) in competitive karatekas. Methods In a double-blind, crossover, randomized placebo-controlled trial, eight Karatekas underwent five experimental conditions including control (CON), placebo (PLA), CAF, NaHCO3, and CAF + NaHCO3 before completing KSAT. Capsules containing 6 mg/kg BW CAF were consumed 50 min prior to a KSAT whilst 0.3 g/kg BW NaHCO3 was consumed for 3 days leading to and 120, 90, and 60 min prior to a KSAT. Time to exhaustion (TTE), rate of perceived exertion (RPE), and blood lactate (BL) were measured before, immediately after and 3 min following KSAT. Results TTE was significantly greater following CAF, NaHCO3, and CAF + NaHCO3 consumption compared to PLA and CON. However, the differences between CAF, NaHCO3, and CAF + NaHCO3 were not statistically significant (p > 0.05). BL increased significantly from baseline to immediately after and 3 min following KSAT in all conditions (p < 0.01), while RPE at the end of KSAT was not significantly different between conditions (p = 0.11). Conclusions Karate practitioners may benefit from the ergogenic effects of CAF and NaHCO3 when consumed separately or together.
Studies have shown that nitrate (NO3−)-rich beetroot juice (BJ) supplementation improves endurance and high-intensity intermittent exercise. The dose–response effects on taekwondo following BJ supplementation are yet to be determined. This study aimed to investigate two acute doses of 400 mg of NO3− (BJ-400) and 800 mg of NO3− (BJ-800) on taekwondo-specific performance and cognitive function tests compared with a placebo (PL) and control (CON) conditions. Eight trained male taekwondo athletes (age: 20 ± 4 years, height: 180 ± 2 cm, body mass: 64.8 ± 4.0 kg) completed four experimental trials using a randomized, double-blind placebo-controlled design: BJ-400, BJ-800, PL, and CON. Participants consumed two doses of BJ-400 and BJ-800 or nitrate-depleted PL at 2.5 h prior to performing the Multiple Frequency Speed of Kick Test (FSKT). Countermovement jump (CMJ) was performed before the (FSKT) and PSTT, whereas cognitive function was assessed (via the Stroop test) before and after supplementation and 10 min following PSTT. Blood lactate was collected before the CMJ tests immediately and 3 min after the FSKT and PSST; rating of perceived exertion (RPE) was recorded during and after both specific taekwondo tests. No significant differences (p > 0.05), with moderate and large effect sizes, between conditions were observed for PSTT and FSKT performances. In addition, blood lactate, RPE, heart rate, and CMJ height were not significantly different among conditions (p > 0.05). However, after the PSTT test, cognitive function was higher in BJ-400 compared to other treatments (p < 0.05). It was concluded that acute intake of 400 and 800 mg of NO3−rich BJ reported a moderate to large effect size in anaerobic and aerobic; however, no statistical differences were found in taekwondo-specific performance.
Caffeine is widely consumed among elite athletes for its well-known ergogenic properties, and its ability to increase exercise performance. However, studies to date have predominantly focused on the anhydrous form of caffeine in male participants. The aim of the study was to investigate the effect of caffeinated coffee ingestion on lower-upper body muscular endurance, cognitive performance, and heart rate variability (HRV) in female athletes. A total of 17 participants (mean ± standard deviation (SD): age = 23 ± 2 years, body mass = 64 ± 4 kg, height = 168 ± 3 cm) in a randomized cross-over design completed three testing sessions, following the ingestion of 3 mg/kg/bm of caffeine (3COF), 6 mg/kg/bm of caffeine (6COF) provided from coffee or decaffeinated coffee (PLA) in 600 mL of hot water. The testing results included: (1) repetition number for muscular endurance performance; (2): reaction time and response accuracy for cognitive performance; (3): HRV parameters, such as standard deviation of normal-to-normal (NN) intervals (SDNN), standard deviation of successive differences (SDSD), root mean square of successive differences (RMSSD), total power (TP), the ratio of low- and high-frequency powers (LF/HF), high-frequency power (HF), normalized HF (HFnu), low-frequency power (LF), and normalized LF (LFnu). A one-way repeated measures ANOVA revealed that 3COF (p = 0.024) and 6COF (p = 0.036) improved lower body muscular endurance in the first set as well as cognitive performance (p = 0.025, p = 0.035 in the post-test, respectively) compared to PLA. However, no differences were detected between trials for upper body muscular endurance (p = 0.07). Lastly, all HRV parameters did not change between trials (p > 0.05). In conclusion, ingesting caffeinated coffee improved lower body muscular endurance and cognitive performance, while not adversely affecting cardiac autonomic function.
Background Creatine (CR) and sodium bicarbonate (SB) alone improve anaerobic performance. However, the ergogenic effects of CR and SB co-ingestion on taekwondo anaerobic performance remains unknown. Methods Forty trained taekwondo athletes (21 ± 1 y.; 180.5 ± 7.3 cm; 72.7 ± 8.6 kg) were randomized to: (i) CR and SB (CR + SB; 20 g of CR+ 0.5 g·kg− 1·d− 1 of SB), (ii) CR, (iii) SB, (iv) placebo (PLA), or (v) control (CON) for 5 days. Before and after supplementation, participants completed 3 bouts of a Taekwondo Anaerobic Intermittent Kick Test (TAIKT) to determine changes in peak power (PP), mean power (MP), and fatigue index (FI). Blood lactate (BL) was measured before, immediately following, and 3 min post-TAIKT. Results PP and MP increased over time (P < 0.05) following CR + SB, CR, and SB ingestion, with no changes in the PLA or CON groups. There was a greater increase over time in MP following CR + SB (Absolute Δ: 1.15 ± 0.28 W∙kg67) compared to CR (Absolute Δ: 0.43 ± 0.33 W∙kg67; P < 0.001) and SB (Absolute Δ: 0.73 ± 0.24 W∙kg67; P = 0.03). There were no significant time and condition effect for FI (P > 0.05). BL increased following exercise across all groups; however, CR + SB and SB post-exercise BL was lower compared to CR, PLA, and CON (P < 0.05). Conclusion Short-term CR and SB alone enhance TAIKT performance in trained taekwondo athletes. Co-ingestion of CR and SB augments MP compared to CR and SB alone, with similar PP improvements.
Background: To examine the effects of varying doses of caffeine on autonomic reactivation following anaerobic exercise. Methods: Recreationally active males (N = 20; 24 ± 2y) participated in a randomized, double-blind, placebocontrolled, crossover study where participants ingested: [1] Control (CON; no supplement), [2] a non-caffeinated placebo (PLA), [3] 3-mg•kg − 1 of caffeine (CAF3) or [4] 6-mg•kg − 1 of caffeine (CAF6) prior to Wingate testing. Parasympathetic (lnRMSSD, primary outcome) and global HRV (lnSDNN, secondary outcome) were assessed at rest (i.e., pre-ingestion), 45-min post-ingestion, and 5-min and 35-min post-exercise recovery. We used a GLM to assess mean (95% CI) changes from pre-ingestion baseline. Results: Overall, we observed a significant trend for lnRMSSD and lnSDNN (both, p = 0.001, ηp 2 = 0.745). Forty-five minutes after treatment ingestion, we observed a significant increase in lnRMSSD for CAF3 (0.15 ms, 95%CI, 0.07, 0.24) and CAF6 (0.16 ms, 95%CI, 0.06,0.25), both being significant (both, p < 0.004) vs. CON (− 0.02 ms, 95%CI, − 0.09, 0.04). Five-minutes after exercise, all treatments demonstrated significant declines in lnRMSSD vs. baseline (all, p < 0.001). After 35-min of recovery, lnRMSSD returned to a level not significantly different than baseline for CAF3 (0.03 ms, 95%CI, − 0.05, 0.12) and CAF6 (− 0.03 ms, 95%CI, − 0.17, 0.10), while PLA (− 0.16 ms, 95%CI, − 0.25, − 0.06) and CON (− 0.17 ms, 95%CI, − 0.28, − 0.07) treatments remained significantly depressed. A similar pattern was also observed for SDNN. Conclusion: Caffeine ingestion increases resting cardiac autonomic modulation and accelerates post-exercise autonomic recovery after a bout of anaerobic exercise in recreationally active young men. However, no differences between caffeine doses on cardiac autonomic reactivity were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.