Background
The ergogenic properties of acute caffeine (CAF) and sodium bicarbonate (NaHCO3) ingestion on athletic performance have been previously investigated. However, each sport has unique physiological and technical characteristics which warrants optimizing supplementations strategies for maximizing performance. This study examined the effects of CAF and NaHCO3 ingestion on physiological responses and rate of perceived exertion during a Karate-specific aerobic test (KSAT) in competitive karatekas.
Methods
In a double-blind, crossover, randomized placebo-controlled trial, eight Karatekas underwent five experimental conditions including control (CON), placebo (PLA), CAF, NaHCO3, and CAF + NaHCO3 before completing KSAT. Capsules containing 6 mg/kg BW CAF were consumed 50 min prior to a KSAT whilst 0.3 g/kg BW NaHCO3 was consumed for 3 days leading to and 120, 90, and 60 min prior to a KSAT. Time to exhaustion (TTE), rate of perceived exertion (RPE), and blood lactate (BL) were measured before, immediately after and 3 min following KSAT.
Results
TTE was significantly greater following CAF, NaHCO3, and CAF + NaHCO3 consumption compared to PLA and CON. However, the differences between CAF, NaHCO3, and CAF + NaHCO3 were not statistically significant (p > 0.05). BL increased significantly from baseline to immediately after and 3 min following KSAT in all conditions (p < 0.01), while RPE at the end of KSAT was not significantly different between conditions (p = 0.11).
Conclusions
Karate practitioners may benefit from the ergogenic effects of CAF and NaHCO3 when consumed separately or together.
The purpose of this study was to compare the effects of different combinations of blood flow restriction (BFR) pressure and exercise intensity on aerobic, anaerobic, and muscle strength adaptations in physically active collegiate women. Thirty-two women (age 22.8 ± 2.9 years; body mass index 22.3 ± 2.7 kg/m
2
) were randomly assigned into four experimental training groups: (a) increasing BFR pressure with constant exercise intensity (IP-CE), (b) constant partial BFR pressure with increasing exercise intensity (CP
p
-IE), (c) constant complete BFR pressure with increasing exercise intensity (CP
C
-IE), and (d) increasing BFR pressure with increasing exercise intensity (IP-IE). The participants completed 12 training sessions comprised of repeated bouts of 2 min running on a treadmill with BFR interspersed by 1-min recovery without BFR. Participants completed a series of tests to assess muscle strength, aerobic, and anaerobic performances. Muscle strength, anaerobic power, and aerobic parameters including maximum oxygen consumption (VO
2
max), time to fatigue (TTF), velocity at VO
2
max (vVO
2
max), and running economy (RE) improved in all groups (
p
≤ 0.01). The CP
C
-IE group outscored the other groups in muscle strength, RE, and TTF (
p
< 0.05). In summary, participants with complete occlusion experienced the greatest improvements in muscle strength, aerobic, and anaerobic parameters possibly due to increased oxygen deficiency and higher metabolic stress.
Fat oxidation has been shown to increase after short term green tea extract (GTE) ingestion and after one bout of intermittent sprinting exercise (ISE). Whether combining the two will result in greater fat oxidation after ISE is undetermined. The aim of the current study was to investigate the combined effect of short term GTE and a single session of ISE upon post-exercise fat oxidation. Fourteen women consumed three GTE or placebo capsules the day before and one capsule 90 min before a 20-min ISE cycling protocol followed by 1 h of resting recovery. Fat oxidation was calculated using indirect calorimetry. There was a significant increase in fat oxidation post-exercise compared to at rest in the placebo condition (p < 0.01). After GTE ingestion, however, at rest and post-exercise, fat oxidation was significantly greater (p < 0.05) than that after placebo. Plasma glycerol levels at rest and 15 min during post-exercise were significantly higher (p < 0.05) after GTE consumption compared to placebo. Compared to placebo, plasma catecholamines increased significantly after GTE consumption and 20 min after ISE (p < 0.05). Acute GTE ingestion significantly increased fat oxidation under resting and post-exercise conditions when compared to placebo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.