The identification of structural damages takes a more and more important role within the modern economy, where often the monitoring of an infrastructure is the last approach to keep it under public use. Conventional monitoring methods require specialized engineers and are mainly time-consuming. This research paper considers the ability of neural networks to recognize the initial or alteration of structural properties based on the training processes. The presented model, a spatially asymmetric encoder–decoder network, is based on 1D-Convolutional Neural Networks (CNN) for wave field pattern recognition, or more specifically the wave field change recognition. The proposed model is used to identify the change within propagating wave fields after a crack initiation within the structure. The paper describes the implemented method and the required training procedure to get a successful crack detection accuracy, where the training data are based on the dynamic lattice model. Although the training of the model is still time-consuming, the proposed new method has an enormous potential to become a new crack detection or structural health monitoring approach within the conventional monitoring methods.
Thermal properties of sand are of importance in numerous engineering and scientific applications ranging from energy storage and transportation infrastructures to underground construction. All these applications require knowledge of the effective thermal parameters for proper operation. The traditional approaches for determination of the effective thermal property, such as the thermal conductivity are based on very costly, tedious and time-consuming experiments. The recent developments in computer science have allowed the use of soft and hard computational methods to compute the effective thermal conductivity (ETC). Here, two computation methods are presented based on soft and hard computing approaches, namely, the deep neural network (DNN) and the thermal lattice element method (TLEM), respectively, to compute the ETC of sands with varying porosity and moisture content values. The developed models are verified and validated with a small data set reported in the literature. The computation results are compared with the experiments, and the numerical results are found to be within reasonable error bounds. The deep learning method offers fast and robust implementation and computation, even with a small data set due to its superior backpropagation algorithm. However, the TLEM based on micro and meso physical laws outperforms it at accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.