Patients with neuropathic pain experience chronic painful tingling, burning, and prickling sensations accompanied with hyperalgesia and/or allodynia. In this study, 38 secondary metabolites of a methanol extract from Salix tetrasperma flowers were identified by liquid chromatography-mass spectrometry (HPLC-MS/MS). The extract showed substantial anti-inflammatory, central and peripheral anti-nociceptive, antipyretic, and antioxidant activities in vitro and in different animal models. In the chronic constriction injury (CCI) rat model, the extract was able to attenuate and significantly relieve hyperalgesia and allodynia responses in a dose dependent manner and restore the myelin sheath integrity and Schwann cells average number in the sciatic nerve. The enzyme-linked immunosorbent assay (ELISA) showed that the extract significantly reduced the expression of various pro-inflammatory biomarkers including nuclear factor kabba B (NF-κB), tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE2), 5-lipoxygenase (5-LOX), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and the oxidative stress biomarker NADPH oxidase 1 (NOX1), in brain stem and sciatic nerve tissues. These findings were supported by in vitro enzyme inhibition assays (COX-1, COX-2 and 5-LOX). Moreover, the extract significantly reduced p53 expression in the brain stem tissue. These findings support the use of S. tetrasperma in folk medicine to alleviate pain. It could be a promising natural product for further clinical investigations to treat inflammation, nociceptive pain and chronic neuropathic pain.
We have previously demonstrated that the Thymus algeriensis and Thymus fontanesii extracts have powerful anti-inflammatory, antipyretic, and analgesic effects against acute pain models. We profiled their chemical composition and found many phenolic acids, flavonoids, and phenolic diterpenes. In this work, we investigated their antioxidant properties on HaCaT cells exposed to UVA-induced oxidative stress and examined their effects against chronic neuropathic pain and the underlying mechanisms. Through a rat chronic constriction injury (CCI) model, we induced chronic neuropathic pain by placing 4 loose ligatures around the right sciatic nerve for 14 days. Thermal and mechanical hyperalgesia in addition to cold and dynamic allodynia were tested on the day before surgery and on the 7th and 14th post-surgery days. Key markers of the nitrosative and oxidative stresses, in addition to markers of inflammation, were measured at day 14 post surgery. Histopathological examination and immunostaining of both synaptophysin and caspase-3 of sciatic nerve and brain stem were also performed. Results of this study showed that T. algeriensis extract suppresses UVA oxidative stress in HaCaT cells via activation of the Nrf-2 pathway. Both extracts attenuated hyperalgesia and allodynia at 7- and 14-days post-surgery with more prominent effects at day 14 of surgery. Their protective effects against neuropathic pain were mediated by inhibiting NOX-1, iNOS, by increasing the enzyme activity of catalase, and inhibition of inflammatory mediators, NF-κB, TNF-α, lipoxygenase, COX-2 enzymes, and PGE2. Furthermore, they improved deleterious structural changes of the brainstem and sciatic nerve. They also attenuated the increased caspase-3 and synaptophysin. The data indicate that both extracts have neuroprotective effects against chronic constriction injury-induced neuropathic pain. The observed protective effects are partially mediated through attenuation of oxidative and nitrosative stress and suppression of both neuroinflammation and neuronal apoptosis, suggesting substantial activities of both extracts in amelioration of painful peripheral neuropathy.
In this study, the phytochemical composition and the possible prophylactic effects of an aqueous ethanol extract of Haematoxylon campechianum flowers (HCF) on peripheral neuropathic pain in a chronic constriction injury (CCI) rat model are investigated. Rats with induced CCI were subjected to neuropathic pain behaviour tests and evaluated by chemical, thermal, and mechanical sensation tests and functional recovery of the brain stem and sciatic nerve at 7- and 14-day intervals. The effect of the extract on acute pain and inflammation is also investigated. The extract exerted both peripheral and central analgesic and anti-inflammatory properties in addition to antipyretic effects that are clear from targeting COX, LOX and PGE. It was found that CCI produced significant thermal and mechanical hyperalgesia, cold allodynia and deleterious structural changes in both sciatic nerve and brain stem. Treatments with HCF extract significantly improved cold and thermal withdrawal latency, mechanical sensibility and ameliorated deleterious changes of sciatic nerve and brain stem at different dose levels. The extract also ameliorated oxidative stress and inflammatory markers in brain stem and sciatic nerve. It suppressed the apoptotic marker, p53, and restored myelin sheath integrity. The effects of HCF extract were more potent than pregabalin. Fifteen secondary metabolites, mainly gallotannins and flavonoids, were characterized in the extract based on their retention times and MS/MS data. The identified phenolic constituents from the extract could be promising candidates to treat neuropathic pain due to their diverse biological activities, including antioxidant, anti-inflammatory and neuroprotective properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.