Water salinity is one of the major abiotic stresses, and the use of saline water for the agricultural sector will incur greater demand in the coming decades. Recently, nanoparticles (NPs) have been used for developing numerous plant fertilizers as a smart and powerful form of material with dual action that can alleviate the adverse effects of salinity and provide the plant with more efficient nutrient forms. This study evaluated the influence of calcium phosphate NPs (CaP-NPs) as a soil fertilizer application on the production and bioactive compounds of broad bean plants under salinity stress. Results showed that salinity had deleterious effects on plant yield with 55.9% reduction compared to control. On the other hand, CaP-NPs dramatically improved plant yield by 30% compared to conventional fertilizer under salinity stress. This improvement could be attributed to significantly higher enhancement in total soluble sugars, antioxidant enzymes, proline content, and total phenolics recorded use of nano-fertilizer compared to conventional use under salt stress. Additionally, nano-fertilizer reflected better mitigatory effects on plant growth parameters, photosynthetic pigments, and oxidative stress indicators (MDA and H2O2). Therefore, our results support the replacement of traditional fertilizers comprising Ca2+ or P with CaP-nano-fertilizers for higher plant productivity and sustainability under salt stress.
Potato is an economically important vegetable crop in Egypt. Weed infestation, especially broad-leafed, during the vegetative growth stage substantially affects both crop yield and tuber quality. In the current study, the impact of new ready-mix pre-emergent herbicides on broadleaf weeds, tuber yield, and quality was evaluated. The two-year field experiment comprised the following treatments: (1) Un-weeded control, (2) Hand hoeing, (3) Sencor, (4) Ecopart, (5) Zeus, (6) Kroki, and (7) Flomex. The results showed that weed control treatments significantly reduced the weed density compared to un-weeded control and the herbicides efficacy reached over 90%. The herbicidal treatments also significantly increased the activity of antioxidant enzymes peroxidases (POX) and catalase (CAT) and improved the non-enzymatic antioxidant (carotenoids) compared to un-weeded control. Conversely, the higher content of malondialdehyde (MDA) in potato leaves was obtained for un-weeded control. Moreover, weed control treatments caused significant enhancement in plant growth parameters, yield, and its components in addition to tuber quality of potato. Compared to the un-weeded control, maximum tuber yield was observed in Flomex followed by Ecopart, Kroki, Zeus, and Sencor, respectively. The higher number of tubers and total yield were recorded in plants treated with Flomex plus compared to all the other treatments. Higher content of total soluble sugar, total soluble protein, and total starch content was observed in weed control treatments compared with un-weeded control. Based on Pearson’s correlation and heatmap analysis, the changes in agro-physiological parameters data are linked to the herbicidal treatments. The results indicate that the applied herbicides could be alternative products for Sencor and an option for controlling broadleaved weeds. However, further studies are needed to ensure their efficacy and safety under other conditions.
KEY WORDSAlkalin soil Ammonium Ammonium nitrate Ammonium sulfate Application method Cotton cultivars Incubation Nitrate Nitrate N loss Phytotoxiceffect Sulfur Urea SUMMARYThe effect of sulfur (S) placement and S rate on the efficiency of urea (U) relative to ammonium sulfate (AS) and ammonium nitrate (AN) for cotton were examined in a pot experiment using sandy clay loam soil (pH 7.9). The results showed that AS and AN application in the absence of S increased the yield than U partly because U-induced damage to plants. The combined application of the N sources with S increased the yields and that, the placement of S in the seed horizon in contact with N was more effective than mixing throughout the soil especially with U. These effects were observed with three cotton cultivars. The addition of S to a maximum of 1.5 g/pot gave further increases in yields or the N content of leaves for U, AS or AN. Using the least squares method, it was found that the presence orS significantly increased the efficiency of U than AS or AN. Incubation of S and the N sources with S in the soil was carried out to understand the growth conditions of cotton fertilized by U in alkalin soil. In the case of U-soil system, the pH increased. NO2-N accumulated and considerable loss of N took place. The pH, NO2-N accumulation and the loss of N decreased with S increments.
The present investigation aims to highlight the role of salt priming in mitigating salt stress on faba bean. In the absence of priming, the results reflected an increase in H2O2 generation and lipid peroxidation in plants subjected to 200 mM salt shock for one week, accompanied by a decline in growth, photosynthetic pigments, and yield. As a defense, the shocked plants showed enhancements in ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POX), and superoxide dismutase (SOD) activities. Additionally, the salt shock plants revealed a significant increase in phenolics and proline content, as well as an increase in the expression levels of glutathione (GSH) metabolism-related genes (the L-ascorbate peroxidase (L-APX) gene, the spermidine synthase (SPS) gene, the leucyl aminopeptidase (LAP) gene, the aminopeptidase N (AP-N) gene, and the ribonucleo-side-diphosphate reductase subunit M1 (RDS-M) gene). On the other hand, priming with increasing concentrations of NaCl (50–150 mM) exhibited little significant reduction in some growth- and yield-related traits. However, it maintained a permanent alert of plant defense that enhanced the expression of GSH-related genes, proline accumulation, and antioxidant enzymes, establishing a solid defensive front line ameliorating osmotic and oxidative consequences of salt shock and its injurious effect on growth and yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.