Chronic stroke patients with heterogeneous lesions, but no direct damage to the primary sensorimotor cortex, are capable of longitudinally acquiring the ability to modulate sensorimotor rhythms using grasping imagery of the affected hand. Volitional modulation of neural activity can be used to drive grasping functions of the paralyzed hand through a brain-computer interface. The neural substrates underlying this skill are not known. Here, we investigated the impact of individual patient's lesion pathology on functional and structural network integrity related to this volitional skill. Magnetoencephalography data acquired throughout training was used to derive functional networks. Structural network models and local estimates of extralesional white matter microstructure were constructed using T 1 -weighted and diffusion-weighted magnetic resonance imaging data. We employed a graph theoretical approach to characterize emergent properties of distributed interactions between nodal brain regions of these networks. We report that interindividual variability in patients' lesions led to differential impairment of functional and structural network characteristics related to successful post-training sensorimotor rhythm modulation skill. Patients displaying greater magnetoencephalography global cost-efficiency, a measure of information integration within the distributed functional network, achieved greater levels of skill. Analysis of lesion damage to structural network connectivity revealed that the impact on nodal betweenness centrality of the ipsilesional primary motor cortex, a measure that characterizes the importance of a brain region for integrating visuomotor information between frontal and parietal cortical regions and related thalamic nuclei, correlated with skill. Edge betweenness centrality, an analogous measure, which assesses the role of specific white matter fibre pathways in network integration, showed a similar relationship between skill and a portion of the ipsilesional superior longitudinal fascicle connecting premotor and posterior parietal visuomotor regions known to be crucially involved in normal grasping behaviour. Finally, estimated white matter microstructure integrity in regions of the contralesional superior longitudinal fascicle adjacent to primary sensorimotor and posterior parietal cortex, as well as grey matter volume co-localized to these specific regions, positively correlated with sensorimotor rhythm modulation leading to successful brain-computer interface control. Thus, volitional modulation of ipsilesional neural activity leading to control of paralyzed hand grasping function through a brain-computer interface after longitudinal training relies on structural and functional connectivity in both ipsilesional and contralesional parietofrontal pathways involved in visuomotor information processing. Extant integrity of this structural network may serve as a future predictor of response to longitudinal therapeutic interventions geared towards training sensorimotor rhythms in the lesioned bra...
Background: MOG antibody and AQP4 antibody seropositive diseases are immunologically distinct subtypes of neuromyelitis optica spectrum disorders (NMOSD) with similar clinical presentations. MRI findings can be instrumental in distinguishing MOG antibody disease from AQP4 antibody NMOSD. Objectives: The aim of this study is to characterize the neuroradiological differences between MOG antibody disease and AQP4 antibody NMOSD with the aim to distinguish between the two entities. Methods: This is a retrospective study of 26 MOG and 25 AQP4 seropositive patients in which MRI features of the brain, spinal cord, and orbit were compared. Results: The majority of the abnormal findings in the MOG cohort were located on orbital MRIs, while spinal cord magnetic resonance (MR) abnormalities were more common in the AQP4 cohort. Brain abnormalities showed some overlap, but cortical gray/juxtacortical white matter involvement was distinct to MOG patients, while area postrema involvement was a rare feature. Conclusion: Cortical gray/juxtacortical white matter lesions on brain MRI might help distinguish MOG antibody disease from AQP4-positive NMOSD. These findings could be of value in distinguishing the two entities as early as the first presentation.
Background and Purpose Penumbral biomarkers promise to individualize treatment windows in acute ischemic stroke. We used a novel MRI approach which measures oxygen metabolic index (OMI), a parameter closely related to PET-derived cerebral metabolic rate of oxygen utilization, to derive a pair of ischemic thresholds: (1) an irreversible-injury threshold which differentiates ischemic core from penumbra and (2) a reversible-injury threshold which differentiates penumbra from tissue not-at-risk for infarction. Methods Forty acute ischemic stroke patients underwent MRI at three time-points after stroke onset: < 4.5 hours (for OMI threshold derivation), 6 hours (to determine reperfusion status), and 1 month (for infarct probability determination). A dynamic susceptibility contrast method measured CBF, and an asymmetric spin echo sequence measured OEF, to derive OMI (OMI=CBF*OEF). Putative ischemic threshold pairs were iteratively tested using a computation-intensive method to derive infarct probabilities in three tissue groups defined by the thresholds (core, penumbra, and not-at-risk tissue). An optimal threshold pair was chosen based on its ability to predict: infarction in the core, reperfusion-dependent survival in the penumbra, and survival in not-at-risk tissue. The predictive abilities of the thresholds were then tested within the same cohort using a 10-fold cross-validation method. Results The optimal OMI ischemic thresholds were found to be 0.28 and 0.42 of normal values in the contralateral hemisphere. Using the 10-fold cross-validation method, median infarct probabilities were 90.6% for core, 89.7% for non-reperfused penumbra, 9.95% for reperfused penumbra, and 6.28% for not-at-risk tissue. Conclusions OMI thresholds, derived using voxel-based, reperfusion-dependent infarct probabilities, delineated the ischemic penumbra with high predictive ability. These thresholds will require confirmation in an independent patient sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.