The present article embraces an entropy analysis on Newtonian and Non-Newtonian fluid due to melting stretching surface in the presence of inclined MHD, non-liner chemical reaction implanted in porous medium with heat source and non-uniform radiations. Also second law analysis and three
different fluids namely Casson, Williamson and Viscous fluids has been taken into an account. This work is not priorly performed including the concept of Entropy generation of above mentioned three fluids. Utilizing the exercise of MATLAB tool along with algorithm of Runge-kutta technique
the arithmetic manipulations for the thermotic equations, mass concentration and momentum equations are executed. Influence of numerous pertinent parameters are investigated on the flow, heat and mass transfer concepts and are demonstrated graphically. The analysis discovered that Entropy
generation is improved for Magnetic field parameter M, porosity parameter Kρ as well as on the inclined magnetic field angle α but the contrary effects are observed on the amount of slip parameter.
The unsteady MHD flow of Powell-Eyring fluid with microorganisms due to permeable extending surface which is also inclined, embedded in porous media is acknwledged. We have considered variable fluid property such as variable viscosity, thermal conductivity. For this perspective relevant
transformations are exercised to reduce the governing PDE’s corresponding to momentum energy, mass and microorganisms’ profiles to system of ODE’s which are of non-linear nature and are numerically evaluated by MATLAB algorithm using Runge-kutta technique. Tabular annotations
including pictorial presentations are comprehensively used to analyse effects caused by physical parameters concerning velocity, energy, mass and microorganisms.The present analysis focuses the study of unsteady MHD slip flow of Powell-Eyring fluid with microorganisms over an inclined permeable
stretching sheet with slip conditions which is not avalaible in open literature beforehand. Rising unsteady parameter (A) decreases skin friction coefficient and reverse impact is shown on local Sherwood, Nusselt, and motile microorganisms’ number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.