We construct an explicit isomorphism between (truncations of) quiver Hecke algebras and Elias-Williamson's diagrammatic endomorphism algebras of Bott-Samelson bimodules. As a corollary, we deduce that the decomposition numbers of these algebras (including as examples the symmetric groups and generalised blob algebras) are tautologically equal to the associated p-Kazhdan-Lusztig polynomials, provided that the characteristic is greater than the Coxeter number. We hence give an elementary and more explicit proof of the main theorem of Riche-Williamson's recent monograph and extend their categorical equivalence to cyclotomic Hecke algebras, thus solving Libedinsky-Plaza's categorical blob conjecture.
The blob algebra is a finite-dimensional quotient of the Hecke algebra of type B which is almost always quasi-hereditary. We construct the indecomposable tilting modules for the blob algebra over a field of characteristic 0 in the doubly critical case. Every indecomposable tilting module of maximal highest weight is either a projective module or an extension of a simple module by a projective module. Moreover, every indecomposable tilting module is a submodule of an indecomposable tilting module of maximal highest weight. We conclude that the graded Weyl multiplicities of the indecomposable tilting modules in this case are given by inverse Kazhdan-Lusztig polynomials of type Ã1 .
The two-colored Temperley-Lieb algebra 2TL R ( s n) is a generalization of the Temperley-Lieb algebra. The analogous two-colored Jones-Wenzl projector JW R ( s n) ∈ 2TL R ( s n) plays an important role in the Elias-Williamson construction of the diagrammatic Hecke category. We give conditions for the existence and rotatability of JW R ( s n) in terms of the invertibility and vanishing of certain two-colored quantum binomial coefficients. As a consequence, we prove that Abe's category of Soergel bimodules is equivalent to the diagrammatic Hecke category in complete generality.
We recast the classical notion of “standard tableaux" in an alcove-geometric setting and extend these classical ideas to all “reduced paths" in our geometry. This broader path-perspective is essential for implementing the higher categorical ideas of Elias–Williamson in the setting of quiver Hecke algebras. Our first main result is the construction of light leaves bases of quiver Hecke algebras. These bases are richer and encode more structural information than their classical counterparts, even in the case of the symmetric groups. Our second main result provides path-theoretic generators for the “Bott–Samelson truncation" of the quiver Hecke algebra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.