In the estimation of glycosidase activity by dinitrosalicylic acid (DNS) reagent, the stoichiometry of DNS reduction was reported to increase proportionately with the increase in the number of glycosidic linkages present in oligosaccharides liberated by the enzyme. The relationship between increases in DNS reduction and increases in the number of glycosidic bonds was found to be represented by a part of a rectangular hyperbola. The increase was optimum with disaccharide and insignificant when the degree of polymerization (DP) was > or =10. The difference did not arise as a result of the DNSA discriminating between mono- and oligosaccharide oxidation. The relationship stemmed from the acidity of the hydroxyl group adjacent to the reducing group, which repressed DNS reduction. The acidity is likely to decrease with an increase in oligosaccharide chain length. It is suggested that DNS reduction is actually optimum and uniform for all oligosaccharides of DP > or = 10 and that it is minimum for monosaccharide. Thus the introduction of rectification factors in the estimation of glycosidase activities by the DNS method appears to be justified.
These results taken together suggest that quercetin could be of potential use not only for correcting movement disturbances and anxiety in HD, but also for addressing inflammatory damages.
Previous computational models have related spontaneous resting-state brain activity with local excitatory−inhibitory balance in neuronal populations. However, how underlying neurotransmitter kinetics associated with E-I balance governs resting state spontaneous brain dynamics remains unknown. Understanding the mechanisms by virtue of which fluctuations in neurotransmitter concentrations, a hallmark of a variety of clinical conditions relate to functional brain activity is of critical importance. We propose a multi-scale dynamic mean field model (MDMF) – a system of coupled differential equations for capturing the synaptic gating dynamics in excitatory and inhibitory neural populations as a function of neurotransmitter kinetics. Individual brain regions are modelled as population of MDMF and are connected by realistic connection topologies estimated from Diffusion Tensor Imaging data. First, MDMF successfully predicts resting-state functionalconnectivity. Second, our results show that optimal range of glutamate and GABA neurotransmitter concentrations subserve as the dynamic working point of the brain, that is, the state of heightened metastability observed in empirical blood-oxygen-level dependent signals. Third, for predictive validity the network measures of segregation (modularity and clustering coefficient) and integration (global efficiency and characteristic path length) from existing healthy and pathological brain network studies could be captured by simulated functional connectivity from MDMF model.
The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is the preferred drug for Parkinson's disease, but long-term treatment results in the drug-induced dyskinesias and other side effects. This study was undertaken to examine whether melatonin could potentiate low dose L-DOPA effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental parkinsonism. Mice were treated with the parkinsonian neurotoxin, MPTP, and different doses of melatonin and low doses of L-DOPA. Behavior, striatal histology, and dopamine metabolism were evaluated on the 7th day. MPTP-induced striatal dopamine loss was not modified by melatonin administration (10-30 mg/kg; i.p. at 10-hr intervals, 6 times; or at 2-hr intervals, by day). However, low doses of L-DOPA (5 mg/kg, by oral gavage) administered alone or along with melatonin (10 mg/kg, i.p.) twice everyday for 2 days, 10 hr apart, after two doses of MPTP significantly attenuated striatal dopamine loss and provided improvements in both catalepsy and akinesia. Additionally, Golgi-impregnated striatal sections showed preservation of the medium spiny neurons, which have been damaged in MPTP-treated mouse. The results demonstrated that melatonin, but not L-DOPA, restored spine density and spine morphology of medium spiny neurons in the striatum and suggest that melatonin could be an ideal adjuvant to L-DOPA therapy in Parkinson's disease, and by the use of this neurohormone, it is possible to bring down the therapeutic doses of L-DOPA.
As the second most abundant biopolymer on earth, and as a resource recently becoming more available in separated and purified form on an industrial scale due to the development of new isolation technologies, lignin has a key role to play in transitioning our material industry towards sustainability. Additive manufacturing (AM), the most efficient‐material processing technology to date, has likewise made great strides to promote sustainable industrial solutions to our needs in engineered products. Bringing lignin research to AM has prompted the emergence of the nascent “lignin 3D printing” field. This review presents the recent state of art of this promising field and highlights its challenges and opportunities. Following a review of the industrial availability, molecular attributes, and associated properties of technical lignins, we review R&D efforts at implementing lignin systems in extrusion‐based and stereolithography (SLA) printing technologies. Doing so underlines the adage of lignin research that “all lignins are not created equal,” and stresses the opportunity nested in this chemical diversity created mostly by differences in isolation conditions to molecularly select and tune the attributes of technical lignin systems towards desirable properties, be it by modification or polymer blending. Considering the AM design process in its entirety, we finally propose onward routes to bring the full potential to this emerging field. We hope that this review can help promote the unique value and overdue industrial role of lignin in sustainable engineered materials and products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.