The present work aims to understand the crystallographic basis of the mechanical behavior of rivaroxaban-malonic acid cocrystal (RIV-MAL Co) in comparison to its parent constituents, i.e., rivaroxaban (RIV) and malonic acid (MAL). The mechanical behavior was evaluated at the bulk level by performing “out of die” bulk compaction and at the particle level by nanoindentation. The tabletability order for the three solids was MAL < RIV < RIV-MAL Co. MAL demonstrated “lower” tabletability because of its lower plasticity, despite it having reasonably good bonding strength (BS). The absence of a slip plane and “intermediate” BS contributed to this behavior. The “intermediate” tabletability of RIV was primarily attributed to the differential surface topologies of the slip planes. The presence of a primary slip plane (0 1 1) with flat-layered topology can favor the plastic deformation of RIV, whereas the corrugated topology of secondary slip planes (1 0 2) could adversely affect the plasticity. In addition, the higher elastic recovery of RIV crystal also contributed to its tabletability. The significantly “higher” tabletability of RIV-MAL Co among the three molecular solids was the result of its higher plasticity and BS. Flat-layered topology slip across the (0 0 1) plane, the higher degree of intermolecular interactions, and the larger separation between adjacent crystallographic layers contributed to improved mechanical behavior of RIV-MAL Co. Interestingly, a particle level deformation parameter H/E (i.e., ratio of mechanical hardness H to elastic modulus E) was found to inversely correlate with a bulk level deformation parameter σ0 (i.e., tensile strength at zero porosity). The present study highlighted the role of cocrystal crystallographic properties in improving the tabletability of materials.
Orb webs absorb the impact energy of prey and transmit vibratory information to the spider with minimal structural damage. The structural properties of the web and the arrangement of threads within the web affect transmission time during the prey impact. The objective of the present study is to determine damping, stiffness, and transmissibility of healthy and damaged spider webs. Experimental results show that stiffness and transmissibility diminish from the inner to outer spiral threads and gradient variation in the structural properties of spiral threads enhances signal transmission capability toward the centre regardless of the position of prey impact within the healthy web. Spiral threads exhibit excellent prey retention properties due to their stretching capability. Kinetic energy produced by prey is absorbed in the threads, which help the spider to analyse the prey retention properties and also determine the response time. The minor damage (up to 25%) does not alter the basic characteristics of the web due to self-adjustment of tension within the web. Damping, natural frequency, stiffness and transmissibility decrease with the increase in the percentage of damaged web. The present study addresses the structural sustainability of the spider web irrespective of minor damages and also provides guidance in designing the structures under impact.
This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.