As technology advances toward ongoing circuit miniaturization and device size reduction followed by improved power density, heat dissipation is becoming a key challenge for electronic equipment. Heat accumulation can be prevented if the heat from electrical equipment is efficiently exported, ensuring a device’s lifespan and dependability and preventing otherwise possible mishaps or even explosions. Hence, thermal management applications, which include altering the role of aerogels from thermally insulative to thermally conductive, have recently been a hot topic for 3D-aerogel-based thermal interface materials. To completely comprehend three-dimensional (3D) networks, we categorized and comparatively analyzed aerogels based on carbon nanomaterials, namely fibers, nanotubes, graphene, and graphene oxide, which have capabilities that may be fused with boron nitride and impregnated for better thermal performance and mechanical stability by polymers, including epoxy, cellulose, and polydimethylsiloxane (PDMS). An alternative route is presented in the comparative analysis by carbonized cellulose. As a result, the development of structurally robust and stiff thermally conductive aerogels for electronic packaging has been predicted to increase polymer thermal management capabilities. The latest trends include the self-organization of an anisotropic structure on several hierarchical levels within a 3D framework. In this study, we highlight and analyze the recent advances in 3D-structured thermally conductive aerogels, their potential impact on the next generation of electronic components based on advanced nanocomposites, and their future prospects.
Laser-produced plasma sources of short-wavelength (1–20-nm) radiation are actively used nowadays in numerous applications, including water-window microscopy and extreme ultra-violet lithography. Suppression of laser-plasma debris (responsible for damaging optics) is crucial for the lifetime prolongation of optical systems operated with the short-wavelength radiation. Here, we examine the capability of single-walled carbon nanotube (SWCNT)-based membranes to decrease an InSn plasma flux containing both ions and atoms. Faraday cup measurements show that 40- and 90-nm-thick SWCNT membranes reduce the total charge transition by 20 and 130 times, respectively. The ion analyzer measurements demonstrate that ions pass through the membrane mainly due to the collisionless (ballistic) mechanism. Using scanning electron microscopy, we estimate a decrease in a plasma (ions + atoms) flux to be of 18 and 140 times for 40- and 90-nm-thick SWCNT-based membranes, respectively. The average plasma flux attenuation coefficient of SWCNT membranes is calculated as k = 0.063 [Formula: see text].
Single-walled carbon nanotube (SWCNT)-based membranes (pellicles) and gas counterflows are used as a debris mitigation system in extreme ultraviolet (EUV) lithography. Densification with volatile liquids is a well-known approach to tune the performance of SWCNT membranes. However, densification can change the gas permeability through SWCNT membranes, violating the circulation of buffer gas counterflows. In the present work, we investigate the Ar permeability through SWCNT membranes before and after densification with isopropyl alcohol in the pressure drop test. The effective diffusivity of Ar through pristine and densified SWCNT membranes is, respectively, calculated to be Deffpristine = 330 × 109 m2 s−1 and Deffdensified = 4 × 109 m2 s−1. We developed a probabilistic model of gas penetration through SWCNT membranes. On the basis of the experimental data, the probabilities of Ar atoms penetrating through pristine and densified SWCNT membranes are estimated to be 8% and 0.1%, respectively. Structural changes in SWCNT membranes after densification with scanning electron microscopy and the Brunauer–Emmett–Teller technique are demonstrated. The bulk density of SWCNT membranes, measured using x-ray reflectometry, is found to be 0.38 and 0.89 g/cm3 before and after densification, respectively. The temporal dynamic of isopropyl alcohol evaporation from the volume of SWCNT membranes is analyzed using Fourier-transform infrared spectroscopy (FTIR). Results obtained using EUV and FTIR spectroscopy show that isopropyl alcohol is present in the volume of the SWCNT membrane even after the membrane has been left in vacuum (P < 0.01 Pa) for 22 h.
In this work, we traced structural transformations of an Al62.5Cu25Fe12.5 alloy, in which a quasicrystalline icosahedral phase (i-phase) can be formed, upon spraying onto a substrate and consolidation from the powder into the bulk state. The Al62.5Cu25Fe12.5 powder was obtained by gas atomization and consisted of i-phase and ?-phase AlCu(Fe). The powder was detonation sprayed (DS) and consolidated by spark plasma sintering (SPS)/hot pressing (HP). During DS, the particles experienced partial or complete melting and rapid solidification, which resulted in the formation of coatings of a complex structure. The composite regions containing i-phase were inherited from the powder alloy. The fraction of the material that experienced melting solidified as ?-phase AlFe(Cu) in the coating. It was suggested that the difficulty of obtaining i-phase upon post-spray annealing is related to aluminum depletion of the alloy during DS. During SPS and HP, the elemental composition of the alloy was preserved, while the exposure to an elevated temperature led to phase homogenization. SPS and HP conducted at 700?C resulted in full densification and the formation of a single-phase quasicrystalline alloy. The sintered single-phase alloy showed a higher microhardness in comparison with the DS coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.