Healthy gastrointestinal tract (GIT) is crucial for optimum performance, better feed efficiency, and overall health of poultry. In the past, antibiotic growth promoters (AGP) were commonly used to modulate the gut health of animals. However, considering the public health concern, the use of AGP in animal feeding is banned or regulated in several jurisdictions around the world. This necessitates the need for alternative nutritional strategies to produce healthy poultry. For that, several alternatives to AGP have been attempted with some success. However, effective modulation of the gut health parameters depends on the methods and timing of the compound being available to host animals. Routinely, the alternatives to AGP and other nutrients are provided in feed or water to poultry. However, the GIT of the newly hatched poultry is functionally immature, despite going through significant morphological, cellular, and molecular changes toward the end of incubation. Thus, early growth and development of GIT are of critical importance to enhance nutrients utilization and optimize the growth of poultry. Early nutrition programming using both in ovo and post-hatch feeding has been used as a means to modulate the early growth and development of GIT and found to be an effective strategy but with inconsistent results. This review summarizes the information on in ovo and post-hatch-feeding of different nutrients and feeds additives and their effects on gut development, histomorphology, microbiology, and immunology. Furthermore, this review will provide insight on the future of early nutrition programming as a strategy to enhance gut health, thereby improving overall health and production so that the poultry industry can benefit from this technique.
The effects of in ovo injection of raffinose (RFO) as a prebiotic on growth performance, relative weight of proventriculus, gizzard, drumstick and breast muscles, and ileum mucosa morphology were examined in Cobb 500 broilers. A total of 240 fertilized eggs were divided into 4 groups: a non-injected with intact shell and 3 levels of RFO solution (1.5, 3.0, and 4.5 mg in 0.2 mL of an aqueous diluents). The RFO solution was injected into the air sac on d 12 of incubation. In total 144 birds were fed a standard diet and management and sacrificed at d 21 post hatch for collection of samples. Total RNA was extracted from the small intestine, and RT-qPCR was performed to quantify mRNA levels of marker genes of immune cells. Injection of RFO had no significant effect (P > 0.05) on d one body weight of chicks. On d 21, the relative weight of the proventriculus, drumstick, breast, and gizzard was not affected (P > 0.05) by RFO. On hatch d, the villus height increased linearly (P < 0.01) with an increasing dose of RFO. Also, an increasing dose of RFO increased the villus height and villus height:crypt depth ratio (P < 0.05) but did not affect the crypt depth on d 21. The expression levels of CD3 and chB6, which are T cell and B cell marker genes, respectively, were significantly enhanced by high dose RFO (4.5 mg). In conclusion, although an increasing dose of RFO in ovo injection did not significantly influence growth performance or slaughter yield of broilers, RFO has the potential of enhancing ileum mucosa morphology and improving immunity in the small intestine, which are indicators of improved gut health.
Dietary fibers (DF) contain an abundant amount of energy, although the mammalian genome does not encode most of the enzymes required to degrade them. However, a mutual dependence is developed between the host and symbiotic microbes, which has the potential to extract the energy present in these DF. Dietary fibers escape digestion in the foregut and are fermented in the hindgut, producing short-chain fatty acids (SCFA) that alter the microbial ecology in the gastrointestinal tract (GIT) of pigs. Most of the carbohydrates are fermented in the proximal part, allowing protein fermentation in the distal part, resulting in colonic diseases. The structures of resistant starch (RS), arabinoxylan (AX), and β-glucan (βG) are complex; hence, makes their way into the hindgut where these are fermented and provide energy substrates for the colonic epithelial cells. Different microbes have different preferences of binding to different substrates. The RS, AX and βG act as a unique substrate for the microbes and modify the relative composition of the gut microbial community. The granule dimension and surface area of each substrate are different, which influences the penetration capacity of microbes. Arabinose and xylan are 2 different hemicelluloses, but arabinose is substituted on the xylan backbone and occurs in the form of AX. Fermentation of xylan produces butyrate primarily in the small intestine, whereas arabinose produces butyrate in the large intestine. Types of RS and forms of βG also exert beneficial effects by producing different metabolites and modulating the intestinal microbiota. Therefore, it is important to have information of different types of RS, AX and βG and their roles in microbial modulation to get the optimum benefits of fiber fermentation in the gut. This review provides relevant information on the similarities and differences that exist in the way RS, AX, and βG are fermented, and their positive and negative effects on SCFA production and gut microbial ecology of pigs. These insights will help nutritionists to develop dietary strategies that can modulate specific SCFA production and promote beneficial microbiota in the GIT of swine.
Many fibrous ingredients incorporated in poultry feed to reduce production costs have low digestibility and cause poor growth in poultry. However, all plant-based fibers are not equal, and thus exert variable physiological effects on the birds, including but not limited to, digestibility, growth performance, and microbial fermentation. Several types of fibers, especially oligosaccharides, when supplemented in poultry diets in isolated form, exhibit prebiotic effects by enhancing beneficial gut microbiota, modulating gut immunity, boosting intestinal mucosal health, and increasing the production of short-chain fatty acids (SCFA) in the gut. Recently, poultry producers are also facing the challenge of limiting the use of antibiotic growth promoters (AGP) in poultry feed. In addition to other alternatives in use, exogenous non-starch polysaccharides digesting enzymes (NSPase) and prebiotics are being used to provide substrates to support the gut microbiome. We also conducted a meta-analysis of different studies conducted in similar experimental conditions to evaluate the variability and conclusiveness in effects of NSPase on growth performance of broilers fed fibrous ingredients. This review presents a holistic approach in discussing the existing challenges of incorporating high-fiber ingredients in poultry feed, as well as strategies to fully utilize the potential of such ingredients in improving feed efficiency and gut health of poultry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.