The findings presented here offer a new approach for the environmental application of pollutant soot somewhat like utilizing a pollutant material for degrading the other pollutant material. Herein, a simpler approach is described for the isolation of two-dimensional graphitic materials as water-soluble graphene nanosheets (wsGNS) from the globally identified dirty−dangerous black pollutant particulate matter as black carbon (BC) from the petrol soot. The asisolated wsGNS are further employed for the photocatalytic degradation of toxic dye such as methylene blue (MB) under the influence of visible light irradiation. The photodegradation performance of wsGNS compared to insoluble graphene nanosheets (GNS) showed ∼11 times faster degradation rate within ∼90 min of visible light exposure (60 W tungsten bulb). The insights of the aqueous phase photodegradation of MB by the system of MB-wsGNS were studied by different chemical characterization techniques including nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, Raman, and fourier transform infrared spectroscopy. Furthermore, we have checked the regeneration efficiency of wsGNS, which was still at its higher value even after five cycles of recycling testing.
Herein, a potential approach is described for assessing the ecological importance of the graphitic nanocarbons isolated from dirty, dangerous black pollutant particulate material. A simple experiment of photodegradation and a toxicological test were done using the natural sunlight as a source of energy and the pollutant petrol soot derived water-soluble graphene nanosheets (wsGNS) as photocatalyst to achieve complete degradation of pollutant organic dye as methylene blue (MB). Compared to the artificial source of visible light (60W tungsten bulb), the sunlight-induced photodegradation using wsGNS show ∼1.5 times higher rate of photodegradation. The toxicological test confirmed the nontoxic behavior of wsGNS against the two different types of bacterial strains: Gram-negative and Gram-positive cells, Escherichia coli and Staphylococcus aureus, respectively. Moreover, wsGNS are precisely used for the selective photodegradation of MB without harming the bacterial growth from the pool of MB-bacterial strains. Nontoxicity and selectivity along with the improved in photodegradation efficiencies by wsGNS under the influence of sunlight are the most significant and sustainable perspectives of the present finding.
In this study, crosslinking of poly(vinyl alcohol) (PVA) with tartaric acid, as crosslinker, is performed using microwave irradiation. A comparison between the properties of PVA crosslinked using microwave irradiation and conventional heating methods is also discussed. While the water absorption, tensile and thermal properties of PVA crosslinked by either of the methods are comparable, microwave irradiation took only one-eighth (14 min) of the time compared to conventional heating. In comparison with PVA (42 MPa), the strength of PVA crosslinked with 35% TA increased to 145 and 153 MPa for conventional heating and microwave irradiation, respectively. Water absorption of crosslinked PVA film is successively reduced to less than 30% in comparison with PVA (200%). Moreover, the crosslinked films are stable at higher temperatures in comparison with PVA. V C 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46125.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.