Groundwater variation can cause land-surface movement, which in turn can cause significant and recurrent harm to infrastructure and the water storage capacity of aquifers. The capital cities in the England (London) and India (Delhi) are witnessing an ever-increasing population that has resulted in excess pressure on groundwater resources. Thus, monitoring groundwater-induced land movement in both these cities is very important in terms of understanding the risk posed to assets. Here, Sentinel-1 C-band radar images and the persistent scatterer interferometric synthetic aperture radar (PSInSAR) methodology are used to study land movement for London and National Capital Territory (NCT)-Delhi from October 2016 to December 2020. The land movement velocities were found to vary between −24 and +24 mm/year for London and between −18 and +30 mm/year for NCT-Delhi. This land movement was compared with observed groundwater levels, and spatio-temporal variation of groundwater and land movement was studied in conjunction. It was broadly observed that the extraction of a large quantity of groundwater leads to land subsidence, whereas groundwater recharge leads to uplift. A mathematical model was used to quantify land subsidence/uplift which occurred due to groundwater depletion/rebound. This is the first study that compares C-band PSInSAR-derived land subsidence response to observed groundwater change for London and NCT-Delhi during this time-period. The results of this study could be helpful to examine the potential implications of ground-level movement on the resource management, safety, and economics of both these cities.
Groundwater-induced land movement can cause damage to property and resources, thus its monitoring is very important for the safety and economics of a city. London is a heavily built-up urban area and relies largely on its groundwater resource and thus poses the threat of land subsidence. Interferometric Synthetic Aperture Radar (InSAR) can facilitate monitoring of land movement and Gravity Recovery and Climate Experiment (GRACE) gravity anomalies can facilitate groundwater monitoring. For London, no previous study has investigated groundwater variations and related land movement using InSAR and GRACE together. In this paper, we used ENVISAT ASAR C-band SAR images to obtain land movement using Persistent Scatterer InSAR (PSInSAR) technique and GRACE gravity anomalies to obtain groundwater variations between December 2002 and December 2010 for central London. Both experiments showed long-term, decreasing, complex, non-linear patterns in the spatial and temporal domain. The land movement values varied from −6 to +6 mm/year, and their reliability was validated with observed Global Navigation Satellite System (GNSS) data, by conducting a two-sample t-test. The average groundwater loss estimated from GRACE was found to be 9.003 MCM/year. The ground movement was compared to observed groundwater values obtained from various boreholes around central London. It was observed that when large volumes of groundwater is extracted then it leads to land subsidence, and when groundwater is recharged then surface uplift is witnessed. The results demonstrate that InSAR and GRACE complement each other and can be an excellent source of monitoring groundwater for hydrologists.
Crucial changes in urban climate can be witnessed due to rapid urbanisation of cities across the world. It is important to find a balance between urban expansion and thermal environment quality to guarantee sustainable urban development. Thus, it is a major research priority to study the urban heat island (UHI) in various fields, i.e., climate change urban ecology, urban climatology, urban planning, mitigation and management, urban geography, etc. The present study highlighted the interrelationship between land surface temperature (LST) and the abundance of impervious cover and green cover in the Varanasi city of Uttar Pradesh, India. For this purpose, we used various GIS and remote-sensing techniques. Landsat 8 images, land-use–land-cover pattern including urban/rural gradients, and grid- and metric-based multi-resolution techniques were used for the analysis. From the study, it was noticed that LST, density of impervious cover, and density of green cover were correlated significantly, and an urban gradient existed over the entire city, depicting a typical UHI profile. It was also concluded that the orientation, randomness, and aggregation of impervious cover and green cover have a strong correlation with LST. From this study, it is recommended that, when planning urban extension, spatial variation of impervious cover and green cover are designed properly to ensure the comfort of all living beings as per the ecological point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.