Summary The histone 3 lysine 79 (H3K79) methyltransferase Dot1l has been implicated in the development of leukemias bearing translocations of the Mixed Lineage Leukemia (MLL) gene. We identified the MLL-fusion targets in an MLL-AF9 leukemia model, and conducted epigenetic profiling for H3K79me2, H3K4me3, H3K27me3 and H3K36me3 in hematopoietic progenitor and leukemia stem cells (LSC). We found abnormal profiles only for H3K79me2 on MLL-AF9 fusion target loci in LSC. Inactivation of Dot1l lead to down-regulation of direct MLL-AF9 targets and an MLL-translocation associated gene expression signature, while global gene expression remained largely unaffected. Suppression of MLL-translocation associated gene expression corresponded with dependence of MLL-AF9 leukemia on Dot1l in vivo. These data point to DOT1L as a potential therapeutic target in MLL-rearranged leukemia.
A subset of cells called leukemia stem cells (LSCs) possess limitless self-renewal and are responsible for maintenance of leukemia. Selective eradication of LSCs could offer significant therapeutic benefit and there is great interest in identifying the signaling pathways that control their development. Here, LSCs were studied in mouse models of acute myelogenous leukemia (AML) induced either by co-expression of the Hoxa9 and Meis1a oncogenes or the fusion oncoprotein MLL-AF9. We show that the Wnt/β-catenin signaling pathway is required for self-renewal of LSCs derived from either hematopoietic stem cells (HSC) or more differentiated granulocyte macrophage progenitors (GMP). Since the Wnt/β-catenin pathway is normally active in HSCs, but not in GMP, reactivation of β-catenin signaling is required for transformation of progenitor cells by certain oncogenes. β-catenin is not absolutely required for self-renewal of adult HSCs, thus targeting the Wnt/β-catenin pathway may represent a new therapeutic opportunity in AML.
Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodeling1. While several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming2,3, the role of specific chromatin modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used shRNAs to target genes in DNA and histone methylation pathways, and have identified positive and negative modulators of iPSC generation. While inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase Ezh2, reduced reprogramming efficiency, suppression of SUV39H1, YY1, and Dot1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase Dot1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for Klf4 and c-Myc. Inhibition of Dot1L early in the reprogramming process is associated with a marked increase in two alternative factors, Nanog and Lin28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. Dot1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.