A rare class of four tetranuclear lanthanide based quadruple stranded helicates namely, [Ln4L4(OH)2](OAc)2·xH2O (Ln = Gd(III)(1), Dy(III)(2) and x = 4, 5 respectively), [Er4L4(OH)2](NO3)2·9H2O (3), and [Dy4L4(NO3)](NO3)2·2CH3OH·H2O (4) were synthesized by employing succinohydrazone derived bis-tridentate ligand (H2L) and characterized. Structures of 1-3 are similar to each other except the nature of counterions and number of lattice water molecules. In 4, a distorted nitrate ion was arranged in a hexagonal manner holding four dysprosium centers in a slightly twisted manner. Because of the symmetrical nature of each complex, the C4 axis crosses the center of helicate resulting a pseudo-D4 coordination environment. Each ligand coordinates to lanthanide centers in helical manner forming mixture of left (Λ) and right (Δ) handed discrete units. Complex 1 exhibits antiferromagnetic exchange interaction between nearby Gd(III) centers and shows magnetic refrigeration (-ΔSm = 24.4 J kg(-1) K(-1) for ΔH = 7 T at 3 K). AC magnetic susceptibility measurements of 2 and 4 demonstrate slow relaxation behavior, with Ueff (effective energy barrier) of 20.5 and 4.6 K, respectively. As per our knowledge, complexes 1, 2, and 4 represent the first examples of aesthetically pleasing quadruple stranded helicates showing potential magnetocaloric effect and single-molecule-magnet-like behavior.
Two europium-based helicates, namely the dinuclear triplestranded helicate [Eu 2 L 3 ] (1) and tetranuclear quadruplestranded helicate [Eu 4 L 4 (NO 3 )] 3+ (2), were achieved by the self-assembly of the succinohydrazone derived bis-tridentate ligand (H 2 L) and Eu 3+ ions in 1:1 and 1:2 ratios, respectively. Both the helicates were characterized by single-crystal X-ray analysis. Structural analysis of both the helicates revealed optically inactive 50:50 mixtures of left-(Λ) and right-hand (Δ) helicates in one unit cell. In 1, both the europium centers [a]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.