There is a critical need in orthopedic and orthodontic clinics for enhanced implant-bone interface contact to facilitate the quick establishment of a strong and durable connection. Surface modification by bioactive multifunctional materials is a possible way to overcome the poor osteoconductivity and the potential infection of Ti-based implants. Ti-25Zr biometallic alloy was prepared by powder metallurgy technique and then coated by Nano-composite fiber using electrospinning. Ceramic Nanocompound (CaTiO3, BaTiO3) was used as filler material and individually added to polymeric matrices constructed from the blend of polycaprolactone/chitosan. Using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and wettability, respectively, the morphology, chemical analysis, surface roughness, and contact angle measurements of the samples were evaluated. The result shows a significant improvement in cell viability, proliferation, and ALP activity for coated samples compared to noncoated samples. PCL/Chitosan/Nano-CaTiO3 (CA1) recorded remarkable enhancement from the surface-coated samples, demonstrating a significantly higher cell viability value after seven days of MC3T3-E1 cell culture, reaching 271.56 ± 13.15%, and better cell differentiation with ALP activity reaching 5.61 ± 0.35 fold change for the same culture time. PCL/Chitosan/Nano-BaTiO3 (BA1) also shows significant improvement in cell viability by 181.63 ± 17.87% and has ALP activity of 3.97 ± 0.67 fold change. For coated samples, cell proliferation likewise exhibits a considerable temporal increase; the improvement reaches 237.53% for (CA1) and 125.16% for (BA1) in comparison with uncoated samples (bare Ti-25Zr). The coated samples resist bacteria in the antibacterial test compared to the noncoated samples with no inhibition zone. This behavior suggests that a Nanocomposite fiber coat containing an active ceramic Nanocompound (CaTiO3, BaTiO3) promotes cell growth and holds promise for orthodontic and orthopedic bioapplication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.