Nowadays, coronavirus (COVID-19) is getting international attention due it considered as a life-threatened epidemic disease that hard to control the spread of infection around the world. Machine learning (ML) is one of intelligent technique that able to automatically predict the event with reasonable accuracy based on the experience and learning process. In the meantime, a rapid number of ML models have been proposed for predicate the cases of COVID-19. Thus, there is need for an evaluation and benchmarking of COVID-19 ML models which considered the main challenge of this study. Furthermore, there is no single study have addressed the problem of evaluation and benchmarking of COVID diagnosis models. However, this study proposed an intelligent methodology is to help the health organisations in the selection COVID-19 diagnosis system. The benchmarking and evaluation of diagnostic models for COVID-19 is not a trivial process. There are multiple criteria requires to evaluate and some of the criteria are conflicting with each other. Our study is formulated as a decision matrix (DM) that embedded mix of ten evaluation criteria and twelve diagnostic models for COVID-19. The multi-criteria decision-making (MCDM) method is employed to evaluate and benchmarking the different diagnostic models for COVID19 with respect to the evaluation criteria. An integrated MCDM method are proposed where TOPSIS applied for the benchmarking and ranking purpose while Entropy used to calculate the weights of criteria. The study results revealed that the benchmarking and selection problems associated with COVID19 diagnosis models can be effectively solved using the integration of Entropy and TOPSIS. The SVM (linear) classifier is selected as the best diagnosis model for COVID19 with the closeness coefficient value of 0.9899 for our case study data. Furthermore, the proposed methodology has solved the significant variance for each criterion in terms of ideal best and worst best value, beside issue when specific diagnosis models have same ideal best value. INDEX TERMS COVID19 diagnostic, machine learning, benchmarking methodology, chest X-rays images, entropy, TOPSIS, multi-criteria decision-making. The associate editor coordinating the review of this manuscript and approving it for publication was Zheng Xiao .
Systems based on fog computing produce massive amounts of data; accordingly, an increasing number of fog computing apps and services are emerging. In addition, machine learning (ML), which is an essential area, has gained considerable progress in various research domains, including robotics, neuromorphic computing, computer graphics, natural language processing (NLP), decision-making, and speech recognition. Several researches have been proposed that study how to employ ML to settle fog computing problems. In recent years, an increasing trend has been observed in adopting ML to enhance fog computing applications and provide fog services, like efficient resource management, security, mitigating latency and energy consumption, and traffic modeling. Based on our understanding and knowledge, there is no study has yet investigated the role of ML in the fog computing paradigm. Accordingly, the current research shed light on presenting an overview of the ML functions in fog computing area. The ML application for fog computing become strong end-user and high layers services to gain profound analytics and more smart responses for needed tasks. We present a comprehensive review to underline the latest improvements in ML techniques that are associated with three aspects of fog computing: management of resource, accuracy, and security. The role of ML in edge computing is also highlighted. Moreover, other perspectives related to the ML domain, such as types of application support, technique, and dataset are provided. Lastly, research challenges and open issues are discussed.INDEX TERMS Fog computing, machine learning, Internet of Things (IoT), applications.
In healthcare applications, numerous sensors and devices produce massive amounts of data which are the focus of critical tasks. Their management at the edge of the network can be done by Fog computing implementation. However, Fog Nodes suffer from lake of resources That could limit the time needed for final outcome/analytics. Fog Nodes could perform just a small number of tasks. A difficult decision concerns which tasks will perform locally by Fog Nodes. Each node should select such tasks carefully based on the current contextual information, for example, tasks’ priority, resource load, and resource availability. We suggest in this paper a Multi-Agent Fog Computing model for healthcare critical tasks management. The main role of the multi-agent system is mapping between three decision tables to optimize scheduling the critical tasks by assigning tasks with their priority, load in the network, and network resource availability. The first step is to decide whether a critical task can be processed locally; otherwise, the second step involves the sophisticated selection of the most suitable neighbor Fog Node to allocate it. If no Fog Node is capable of processing the task throughout the network, it is then sent to the Cloud facing the highest latency. We test the proposed scheme thoroughly, demonstrating its applicability and optimality at the edge of the network using iFogSim simulator and UTeM clinic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.