The performance of power line communication (PLC) systems suffer mainly from non-Gaussian noise, commonly referred to as impulsive noise. To reduce the effect of this noise, various channel coding techniques have been studied in the literature over PLC channels. Unlike existing works, in this paper we investigate the performance and robustness of polar codes over impulsive noise PLC channels for different codeword lengths and noise scenarios in orthogonal frequency division multiplexing (OFDM) systems. In particular, insightful comparisons between hard decision (HD) decoding and soft decision (SD) decoding for the proposed system are made. Furthermore, we investigate the blanking and clipping techniques with polar codes for impulsive noise mitigation. In addition, for the sake of comparison, results for LDPC coding are also presented. The results show that polar codes can considerably improve the performance of PLC systems. It will also be demonstrated that SD decoding offers better performance than HD decoding and that as the codeword length is increased, the performance can be further improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.