Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections.
Procalcitonin (PCT) and Interleukin-6 (IL-6) have emerged as biomarkers for different inflammatory conditions. The purpose of the study was to evaluate the role of PCT and IL-6 as biomarkers of cancer and its progression in a large cohort of patients. This cross-sectional study included residual plasma samples collected from cancer patients, and control subjects without cancer. Levels of PCT and IL-6 were determined by Kryptor compact bioanalyzer. We identified 575 febrile cancer patients, 410 non-febrile cancer patients, and 79 non-cancer individuals. The median PCT level was lower in control subjects (0.029 ng/ml) compared to cancer patients with stage I-III disease (0.127 ng/ml) (p<0.0001) and stage IV disease (0.190 ng/ml) (p<0.0001). It was also higher in febrile cancer patients (0.310 ng/ml) compared to non-febrile cancer patients (0.1 ng/ml) (p<0.0001). Median IL-6 level was significantly lower in the control group (0 pg/ml) than in non-febrile cancer patients with stages I-III (7.376 pg/ml) or stage IV (9.635 pg/ml) (p<0.0001). Our results suggest a potential role for PCT and IL-6 in predicting cancer in non-febrile patients. In addition, PCT is useful in detecting progression of cancer and predicting bacteremia or sepsis in febrile cancer patients.
In cancer patients with long-term central venous catheters (CVC), removal and reinsertion of a new CVC at a different site might be difficult because of the unavailability of accessible vascular sites. In vitro and animal studies showed that a minocycline-EDTA-ethanol (M-EDTA-EtOH) lock solution may eradicate microbial organisms in biofilms, hence enabling the treatment of central line-associated bloodstream infections (CLABSI) while retaining the catheter in situ. Between April 2013 and July 2014, we enrolled 30 patients with CLABSI in a prospective study and compared them to a historical group of 60 patients with CLABSI who had their CVC removed and a new CVC inserted. Each catheter lumen was locked with an M-EDTA-EtOH solution for 2 h administered once daily, for a total of 7 doses. Patients who received locks had clinical characteristics that were comparable to those of the control group. The times to fever resolution and microbiological eradication were similar in the two groups. Patients with the lock intervention received a shorter duration of systemic antibiotic therapy than that of the control patients (median, 11 days versus 16 days, respectively; P < 0.0001), and they were able to retain their CVCs for a median of 74 days after the onset of bacteremia. The M-EDTA-EtOH lock was associated with a significantly decreased rate of mechanical and infectious complications compared to that of the CVC removal/reinsertion group, who received a longer duration of systemic antimicrobial therapy. (This study has been registered at ClinicalTrials.gov under registration no. NCT01539343.) L ong-term central venous catheters have become a lifeline for patients with cancer, those undergoing transplant, or longterm hemodialysis patients. More than five million central venous catheters (CVCs) are inserted annually in the United States, resulting in approximately 400,000 episodes of central line-associated bloodstream infections (CLABSI) and catheter-related bloodstream infections (CRBSI) (1, 2), each associated with an attributable mortality of 12 to 35% (3, 4) and an attributable cost of $34,508 to $56,000 per episode (5). For CLABSI/CRBSI associated with long-term CVCs (including cuffed/tunneled CVCs or ports with a dwell time of Ͼ30 days), the lumen of the catheter is the major source of colonization and subsequent bacteremia (6).The conventional standard of care in the management of CLABSI/CRBSI involves removal of the infected CVC and replacement with a new catheter at a different vascular site (7). However, in cancer, transplant, and hemodialysis patients with long-term catheters, removal of the CVC and reinsertion of a new catheter at a different site might be difficult or even impossible because of the unavailability of accessible vascular sites. Furthermore, these seriously ill patients with CLABSI/CRBSI and sepsis often have underlying thrombocytopenia or coagulopathy, which would make reinsertion of a new CVC at a different site risky given these comorbidities and related mechanical complications, such as blee...
We compared the etiologic organisms of bloodstream infections (BSIs) in cancer patients with central venous catheters (CVCs) between 2 cohorts separated by more than a decade.Gram-negative organisms have become the predominant etiologic organisms of BSIs (52%); they now contribute to 41% of catheter-related BSIs (CRBSIs).Infect Control Hosp Epidemiol 2018;39:727-729.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.