Land use, land cover and climate change (CC) can significantly influence the hydrologic balance and biogeochemical processes of watershed systems. These changes can alter interception, evapotranspiration (ET), infiltration, soil moisture, water balance, and biogeochemical cycling of carbon, nitrogen, and other elements. The need to evaluate the combined effect of land use change and CC of watershed systems is a focus of this study. We simulated watershed processes in the SuAsCo River watershed in MA, USA, using a calibrated and validated Hydrological Simulation Program Fortran model. Climatic scenarios included downscaled regional projections from Global Climate Model models. The Land Transformation Model was used to project land use. Combined change in land cover and climate reduce ET with loss of vegetation. Changes in climate and land cover increase surface runoff significantly by 2100 as well as stream discharge. Combined change in land cover and climate cause 10% increase in peak volume with 7% increase in precipitation and 75% increase in effective impervious area. Climate and land use changes can intensify the water cycle and introduce seasonal changes in watershed systems. Understanding dynamic changes in watershed systems is critical for mitigation and adaptation options. We propose restoration strategies that can increase the resilience of watershed systems.
Long‐running eddy covariance flux towers provide insights into how the terrestrial carbon cycle operates over multiple timescales. Here, we evaluated variation in net ecosystem exchange (NEE) of carbon dioxide (CO2) across the Chequamegon Ecosystem‐Atmosphere Study AmeriFlux core site cluster in the upper Great Lakes region of the USA from 1997 to 2020. The tower network included two mature hardwood forests with differing management regimes (US‐WCr and US‐Syv), two fen wetlands with varying levels of canopy sheltering and vegetation (US‐Los and US‐ALQ), and a very tall (400 m) landscape‐level tower (US‐PFa). Together, they provided over 70 site‐years of observations. The 19‐tower Chequamegon Heterogenous Ecosystem Energy‐balance Study Enabled by a High‐density Extensive Array of Detectors 2019 campaign centered around US‐PFa provided additional information on the spatial variation of NEE. Decadal variability was present in all long‐term sites, but cross‐site coherence in interannual NEE in the earlier part of the record became weaker with time as non‐climatic factors such as local disturbances likely dominated flux time series. Average decadal NEE at the tall tower transitioned from carbon source to sink to near neutral over 24 years. Respiration had a greater effect than photosynthesis on driving variations in NEE at all sites. Declining snowfall offset potential increases in assimilation from warmer springs, as less‐insulated soils delayed start of spring green‐up. Higher CO2 increased maximum net assimilation parameters but not total gross primary productivity. Stand‐scale sites were larger net sinks than the landscape tower. Clustered, long‐term carbon flux observations provide value for understanding the diverse links between carbon and climate and the challenges of upscaling these responses across space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.