The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver‐Julesburg Basin. To further characterize the emissions of methane and non‐methane hydrocarbons (propane, n‐butane, i‐pentane, n‐pentane and benzene) around BAO, a pilot study involving automobile‐based surveys was carried out during the summer of 2008. A mix of venting emissions (leaks) of raw natural gas and flashing emissions from condensate storage tanks can explain the alkane ratios we observe in air masses impacted by oil and gas operations in northeastern Colorado. Using the WRAP Phase III inventory of total volatile organic compound (VOC) emissions from oil and gas exploration, production and processing, together with flashing and venting emission speciation profiles provided by State agencies or the oil and gas industry, we derive a range of bottom‐up speciated emissions for Weld County in 2008. We use the observed ambient molar ratios and flashing and venting emissions data to calculate top‐down scenarios for the amount of natural gas leaked to the atmosphere and the associated methane and non‐methane emissions. Our analysis suggests that the emissions of the species we measured are most likely underestimated in current inventories and that the uncertainties attached to these estimates can be as high as a factor of two.
The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.
An experimental investigation on the effects of buoyancy on opposed flow smolder is presented. Tests were conducted on cylindrical samples of open-cell, unretarded polyurethane foams at a range of ambient pressures using the Microgravity Smoldering Combustion (MSC) experimental apparatus. The samples were tested in the opposed configuration, in which the flow of oxidizer is induced in the opposite direction as the propagation of the smolder front. These data were compared with opposed forced-flow tests conducted aboard STS-69, STS-77, and STS-105 and their ground based simulations. Thermal measurements were made of the smolder reaction to obtain peak reaction temperatures and smolder velocities as a function of the ambient pressure in the MSC chamber. The smolder reaction was also observed using high-frequency ultrasound pulses as part of the Ultrasound Imaging System (UIS). The UIS measurements were used as a second means of providing smolder propagation velocities as well as to obtain permeabilities of the reacting samples. Results of forced flow testing in normal gravity were compared to results in microgravity at a range of ambient pressures and forced flows. Results indicate that a critical oxidizer mass flux of roughly 0.5 to 0.8 g/m 2 s is required in normal gravity for a self-sustaining propagation in this configuration. In microgravity tests, self-sustained smolder propagation was observed at a significantly lower oxidizer mass flux of 0.30 g/m 2 s. Analysis suggests that the removal of buoyancyinduced heat losses in microgravity allows for self-sustained propagation at an oxidizer mass flux below the critical value observed in normal-gravity testing. Normal-gravity tests also show that the smolder propagation velocity is linearly dependent on the total oxidizer mass flux in an oxidizer-limited regime. Pressure effects on the chemical kinetics of a smolder reaction are inferred by comparison of normalgravity and microgravity tests and believed to be only weakly dependent on pressure (~P 1/3 ).
Results from two forward forced-flow smolder tests on polyurethane foam using air as oxidizer conducted aboard the NASA Space Shuttle (STS-105 and STS-108 missions) are presented in this work. The two tests provide the only presently available forward smolder data in microgravity. A complimentary series of ground-based tests were also conducted to determine, by comparison with the microgravity data, the effect of gravity on the forward smolder propagation. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder for the purpose of control and prevention, both in normaland microgravity. The data consists of temperature histories from thermocouples placed at various axial locations along the fuel sample centerline, and of permeability histories obtained from ultrasonic transducer pairs also located at various axial positions in the fuel sample. A comparison of t he tests conducted in normal-and microgravity indicates that smolder propagation velocities are higher in microgravity than in normal gravity, and that there is a greater tendency for a transition to flame in microgravity than in normal gravity. This is due primarily to the reduced heat losses in the microgravity environment, leading to increased char oxidation. This observation is confirmed through a simplified one-dimensional model of the forward smolder propagation. This finding has important implications from the point of view of fire safety in a space-based environment, since smolder can often occur in the forward mode and potentially lead to a smolder-initiated fire.
Experimental observations are presented of the effect of flow velocity, oxygen concentration, and a thermal radiant flux, on the transition from smoldering to flaming in forward smoldering of small samples of polyurethane foam with a gas/solid interface. The experiments are part of a project studying the transition from smoldering to flaming under conditions encountered in spacecraft facilities, i.e., microgravity, low velocity variable oxygen concentration flows. Because the microgravity experiments are planned for the International Space Station, the foam samples had to be limited in size for safety and launch mass reasons. The feasible sample size is too small for smolder to self propagate because of heat losses to the surroundings. Thus, the smolder propagation and the transition to flaming had to be assisted by reducing heat losses to the surroundings and increasing the oxygen concentration. The experiments are conducted with small parallelepiped samples vertically placed in a wind tunnel. Three of the sample lateral-sides are maintained at elevated temperature and the fourth side is exposed to an upward flow and a radiant flux. It is found that decreasing the flow velocity and increasing its oxygen concentration, and/or increasing the radiant flux enhances the transition to flaming, and reduces the time delay to transition.Limiting external conditions for the transition to flaming are reported for this experimental configuration.The results show that smolder propagation and transition to flaming can occur in relatively small fuel samples if the external conditions are appropriate. The results also indicate that transition to flaming occurs in the char region left behind by the smolder reaction, and it has the characteristics of a gas-phase ignition induced by the smolder reaction, which acts as the source of both gaseous fuel and heat. A simplified energy balance analysis is able to predict the boundaries between the transition/no transition regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.