The Ripple network is one of the most prominent blockchain platforms and its native XRP token currently has one of the highest cryptocurrency market capitalizations. The Ripple consensus protocol powers this network and is generally considered to a Byzantine fault-tolerant agreement protocol, which can reach consensus in the presence of faulty or malicious nodes. In contrast to traditional Byzantine agreement protocols, there is no global knowledge of all participating nodes in Ripple consensus; instead, each node declares a list of other nodes that it trusts and from which it considers votes.Previous work has brought up concerns about the liveness and safety of the consensus protocol under the general assumptions stated initially by Ripple, and there is currently no appropriate understanding of its workings and its properties in the literature. This paper closes this gap and makes two contributions. It first provides a detailed, abstract description of the protocol, which has been derived from the source code. Second, the paper points out that the abstract protocol may violate safety and liveness in several simple executions under relatively benign network assumptions.
Despite the tremendous interest in cryptocurrencies like Bitcoin and Ethereum today, many aspects of the underlying consensus protocols are poorly understood. Therefore, the search for protocols that improve either throughput or security (or both) continues. Bitcoin always selects the longest chain (i.e., the one with most work). Forks may occur when two miners extend the same block simultaneously, and the frequency of forks depends on how fast blocks are propagated in the network. In the GHOST protocol, used by Ethereum, all blocks involved in the fork contribute to the security. However, the greedy chain selection rule of GHOST does not consider the full information available in the block tree, which has led to some concerns about its security.This paper introduces a new family of protocols, called Medium, which takes the structure of the whole block tree into account, by weighting blocks differently according to their depths. Bitcoin and GHOST result as special cases. This protocol leads to new insights about the security of Bitcoin and GHOST and paves the way for developing network-and application-specific protocols, in which the influence of forks on the chain-selection process can be controlled. It is shown that almost all protocols in this family achieve strictly greater throughput than Bitcoin (at the same security level) and resist attacks that can be mounted against GHOST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.