Abstract. Tumor hypoxia commonly occurs in solid tumors, and correlates with metastasis. Current cancer therapies are inefficient in curing metastatic disease. Herein, we examined effect of Thai propolis extract and its major constituent, chrysin, on hypoxic survival of 4T1 mouse breast cancer cells in vitro, and investigated its underlying mechanism. In vivo effect of chrysin on metastatic progression of cancer cells was studied, both as a single agent and in combination with another antimetastatic agent, agonistic monoclonal antibody targeting the DR5 TRAIL receptor (DR5 mAb). Thai propolis extract and chrysin decreased survival of 4T1 cells after exposure to hypoxia (1% O 2 ), for 2 days. Immunoblot analysis revealed that chrysin inhibited hypoxia-induced STAT3 phosphorylation without affecting HIF-1α protein level. Chrysin also abrogated hypoxia-induced VEGF gene expression as determined by qRT-PCR. The in vivo effect of chrysin was determined in a spontaneous metastasis mouse model of breast cancer, either alone or in combination with DR5 mAb. Daily oral administration of chrysin in Balb/c mice implanted with 4T1 cells significantly suppressed growth of lung metastatic colonies. Moreover, antimetastatic activity of DR5 mAb was enhanced when given in combination with chrysin. We demonstrate that chrysin has potential in controlling metastatic progression.
Abstract. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively kills various types of cancer cells without harming normal cells, but TRAIL resistance has been frequently observed in cancer cells. Propolis (bee glue) is a material collected from various plants by honeybees and is a rich source of bioactive compounds, including the natural flavonoid chrysin, which possesses multiple anticancer effects. We investigated the mechanism underlying the TRAIL sensitization effect of chrysin, which is a major constituent of Thai propolis, in human lung and cervical cancer cell lines. Propolis extract and chrysin sensitizes A549 and HeLa human cancer cell lines to TRAIL-induced apoptosis. The TRAIL sensitization effect of chrysin is not mediated by inhibition of TRAIL-induced NF-κB activation or by glutathione depletion. Immunoblot analysis using a panel of anti-apoptotic proteins revealed that chrysin selectively decreases the levels of Mcl-1 protein, by downregulating Mcl-1 gene expression as determined by qRT-PCR. The contribution of Mcl-1 in TRAIL resistance was confirmed by si-Mcl-1 knockdown. Among signaling pathways that regulate Mcl-1 gene expression, only constitutive STAT3 phosphorylation was suppressed by chrysin. The proposed action of chrysin in TRAIL sensitization by inhibiting STAT3 and downregulating Mcl-1 was supported by using a STAT3-specific inhibitor, cucurbitacin-I, which decreased Mcl-1 levels and enhanced TRAIL-induced cell death, similar to that observed with chrysin treatment. In conclusion, we show the potential of chrysin in overcoming TRAIL resistance of cancer cells and elucidate its mechanism of action.
The objective of this study is to prepare the gamma-oryzanol-loaded liposomes and investigate their physicochemical properties and antioxidant activity intended for cosmetic applications. Liposomes, Composing phosphatidylCholine (PC) and Cholesterol (Chol), CHAPS or sodium taurocholate (NaTC) were prepared by sonication method. Gamma-oryzanol-loaded liposomes were prepared by using 3, 5 and 10% gamma-oryzanol as an initial concentration. The formulation factors in a particular type and composition of lipid and initial drug loading on the physicochemical properties (i.e., particle size, zeta potential, entrapment efficiency, drug release) and antioxidant activity were studied. The particle sizes of bare liposomes were in nanometer range. The gamma-oryzanol-loaded liposomes in formulations of PC/CHAPS and PC/NaTC liposomes were smaller than PC/Chol liposomes. The incorporation efficiency of 10% gamma-oryzanol-loaded PC/Chol liposomes was less than gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes allowing higher in vitro release rate due to higher free gamma-oryzanol in buffer solution. The antioxidant activity of gamma-oryzanol-loaded liposomes was not different from pure gamma-oryzanol. Both gamma-oryzanol-loaded PC/CHAPS liposomes and PC/NaTC liposomes were showed to enhance the antioxidant activity in NHF cells. gamma-oryzanol-loaded PC/Chol liposomes demonstrated the lowest cytotoxicity in NHF cells. It was conceivably concluded that liposomes prepared in this study are suitable for gamma-oryzanol incorporation without loss of antioxidant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.