This study sought to optimize the envelope thermal design of free-running urban residential buildings in Malawi. It specifically set out to improve the urban residential buildings' thermal comfort and suggest optimal envelope thermal design features for these buildings. The research study was primarily dependent on computer simulations in EnergyPlus to replicate the typical Malawian urban residential building's thermal behaviour and then study the impacts of various envelope configurations on the thermal comfort conditions registered in the building. The simulation model was experimentally validated to check its appropriateness to the climatic design conditions prevalent in Malawi and out of the three major cities that were considered, the model was found to be appropriate for use in the two cities of Mzuzu and Lilongwe leaving out the city of Blantyre. The optimization methodology that was employed involved the use of orthogonal arrays, statistical analyses and the listing method. It was found that the optimal envelope thermal design, which registered up to 18% lower discomfort hours than that of the typical urban residential building, consists of a 50 mm concrete floor slab, 230 mm burnt brick walls with an external layer of 19 mm EPS, tiled roof with an internal layer of sarking and 50 mm EPS, double Low-E Glazing with a transparency ratio of 45% and 0.2408 m 2 of adaptable operational surface area for the air bricks. Out of all the envelope features that were studied, air infiltration registered the most significant contribution towards the ultimate residential building thermal performance. It was demonstrated that controlled air infiltration through the use of operable air bricks whose operational surface area is adaptable can be very effective in enhancing the building's comfort levels. It was further observed that excessive insulation of the building envelope generally has a detrimental effect on the indoor space thermal comfort levels.
Buildings account for about 40% of the global energy consumption and this energy demand is projected to continue growing over the next few decades. Residential buildings are responsible for over 60% of this consumption pattern with commercial buildings being responsible for the remainder. While residential building energy consumption constitutes about 20% of the total consumption in the developed world, it constitutes up to more than 50% in the sub-Sahara African region. The growing consumption of energy has raised concerns over the impacts on the environment, supply difficulties, and depletion of resources. In efforts toward addressing these concerns, the need for effective management of energy resources and adequate planning for energy infrastructure cannot be overemphasized within the building industry in general and the residential building sector in particular. Toward this end, it is necessary to ensure that high quality and high-resolution information on the consumption of energy in buildings is made available. Unfortunately, in many countries within the sub-Sahara African region, building energy consumption information is hardly ever readily available. This study seeks to make a contribution toward this facet of the literature at the greater regional level in general and particularly, in Malawi, a country located in the southern part of Africa. With a grounding in the context of urban residential buildings, the study identifies the key energy end-uses, investigates the proportional mixes of the end-uses and the energy sources and, finally, establishes the periodical per capita energy consumption amounts for the end-uses and the typical residential building unit. BackgroundBuildings account for about 40% of the global energy consumption, a thing that accords them prominence in the energy market [1]. The demand for energy in buildings is projected to continue growing over the next few decades [2,3]. The International Energy Agency (IEA) [4] suggests that by 2050, the energy consumption in buildings will have exceeded 4400 Mtoe, up from 2759 Mtoe recorded in 2007, a 37% increase. Previously, this demand has grown by about 2% annually [5]. According to the IEA [6], residential buildings are responsible for over 60% of this building consumption pattern with commercial buildings on the other hand responsible for the remainder. While residential building energy consumption constitutes about 20% of the total consumption in the developed world, it constitutes up to more than 50% in sub Saharan Africa [7].The growing consumption of energy has raised concerns over the impacts on the environment, supply difficulties and depletion of energy resources [8].The energy-related impacts on the environment come through the emissions of greenhouse gases (GHG), the most important of which is carbon dioxide, CO 2 [9]. This is particularly the case when power production involves the burning of fossil fuels and biomass sources of energy. It is reported that
Computer simulations are widely used within the area of building science research. Building science research deals with the physical phenomena that affect buildings, including heat and mass transfer, lighting and acoustic transmission. This wide usage of computer simulations, however, is characterized by a divergence in thought on the composition of an epistemological framework that may provide guidance for their deployment in research. This paper undertakes a fundamental review of the epistemology of computer simulations within the context of the philosophy of science. Thereafter, it reviews the epistemological framework within which computer simulations are used in practice within the area of building science research. A comparison between the insights obtained from the realms of theory and practice is made, which then interrogates the adequacy of the epistemological approaches that have been employed in previously published simulation-based research. These insights may help in informing a normative composition of an adequate epistemological framework within which computer simulation-based building science research may be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.