In this data article, data obtained from an efficient, eco-friendly and low-cost method for the synthesis and recovery of Silver nanoparticles (AgNPs) using ethanolic extracts of Annona muricata fruits and leaves as reducing, stabilizing and capping agents has been reported. 99.7% pure silver nitrate was used as the inorganic ion source. The data was obtained using different spectroscopic and microscopic techniques. The data is presented in form of images, Microsoft excel sheets, graphs,.raw files,.dpt files, PDF files, among others. Methods of analysis and interpretation of the data have also been presented. The data can be most useful to researchers, research students, industrialists and academicians to acquire knowledge on the green synthesis of AgNPs and related applications. The data is deposited in the Mendeley Data Repository as two independent datasets accessible at https://doi.org/10.17632/jkj2x782wh.1 Gavamukulya et al., 2019 and https://doi.org/10.17632/f4mb6b488n.1 Gavamukulya et al., 2019.
BACKGROUND: Green synthesized nanoparticles have been earmarked for use in nanomedicine including for the development of better anticancer drugs. OBJECTIVE: The aim of this study was to undertake biochemical evaluation of anticancer activities of green synthesized silver nanoparticles (AgNPs) from ethanolic extracts of fruits (AgNPs-F) and leaves (AgNPs-L) of Annona muricata. METHODS: Previously synthesized silver nanoparticles were used for the study. The effects of the AgNPs and 5-Fluorouracil were studied on PC3, HeLa and PNT1A cells. The resazurin, migration and colonogenic assays as well as qRT-PCR were employed. RESULTS: The AgNPs-F displayed significant antiproliferative effects against HeLa cells with an IC50 of 38.58μg/ml and PC3 cells with an IC50 of 48.17μg/ml but selectively spared normal PNT1A cells (selectivity index of 7.8), in comparison with first line drug 5FU and AgNPs-L whose selectivity index were 3.56 and 2.26 respectively. The migration assay revealed potential inhibition of the metastatic activity of the cells by the AgNPs-F while the colonogenic assay indicated the permanent effect of the AgNPs-F on the cancer cells yet being reversible on the normal cells in contrast with 5FU and AgNPs-L. CASP9 was significantly over expressed in all HeLa cells treated with the AgNPs-F (1.53-fold), AgNPs-L (1.52-fold) and 5FU (4.30-fold). CXCL1 was under expressed in HeLa cells treated with AgNPs-F (0.69-fold) and AgNPs-L (0.58-fold) and over expressed in cells treated with 5FU (4.95-fold), but the difference was not statistically significant. CXCR2 was significantly over expressed in HeLa cells treated with 5FU (8.66-fold) and AgNPs-F (1.12-fold) but under expressed in cells treated with AgNPs-L (0.76-fold). CONCLUSIONS: Here we show that biosynthesized AgNPs especially AgNPs-F can be used in the development of novel and better anticancer drugs. The mechanism of action of the AgNPs involves activation of the intrinsic apoptosis pathway through upregulation of CASP9 and concerted down regulation of the CXCL1/ CXCR2 gene axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.