SummaryNuclear pore complexes (NPCs) are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Elucidating their 110 MDa structure imposes a formidable challenge and requires in situ structural biology approaches. Fifteen out of about thirty nucleoporins (Nups) are structured and form the Y- and inner ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ∼60 nm in diameter 1. The scaffold is decorated with transport channel Nups that often contain phenylalanine (FG)-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y-complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here, we combined cryo electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modeling to generate the most comprehensive architectural model of the NPC to date. Our data suggest previously unknown protein interfaces across Y-complexes and to inner ring complex members. We demonstrate that the higher eukaryotic transport channel Nup358 (RanBP2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport channel Nups. We conclude that, similarly to coated vesicles, multiple copies of the same structural building block - although compositionally identical - engage in different local sets of interactions and conformations.
The nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes.
The stoichiometry of the human nuclear pore complex is revealed by targeted mass spectrometry and super-resolution microscopy. The analysis reveals that the composition of the nuclear pore and other nuclear protein complexes is remodeled as a function of the cell type.
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic exchange. They are exceptionally large protein complexes that fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. About 30 different protein components, termed nucleoporins, assemble in multiple copies into an intricate cylindrical architecture. Here, we review our current knowledge of the structure of nucleoporins and how those come together in situ. We delineate architectural principles on several hierarchical organization levels, including isoforms, posttranslational modifications, nucleoporins, and higher-order oligomerization of nucleoporin subcomplexes. We discuss how cells exploit this modularity to faithfully assemble NPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.