Pelger-Huët anomaly (PHA; OMIM *169400) is an autosomal dominant disorder characterized by abnormal nuclear shape and chromatin organization in blood granulocytes. Affected individuals show hypolobulated neutrophil nuclei with coarse chromatin. Presumed homozygous individuals have ovoid neutrophil nuclei, as well as varying degrees of developmental delay, epilepsy and skeletal abnormalities. Homozygous offspring in an extinct rabbit lineage showed severe chondrodystrophy, developmental anomalies and increased pre- and postnatal mortality. Here we show, by carrying out a genome-wide linkage scan, that PHA is linked to chromosome 1q41-43. We identified four splice-site, two frameshift and two nonsense mutations in LBR, encoding the lamin B receptor. The lamin B receptor (LBR), a member of the sterol reductase family, is evolutionarily conserved and integral to the inner nuclear membrane; it targets heterochromatin and lamins to the nuclear membrane. Lymphoblastoid cells from heterozygous individuals affected with PHA show reduced expression of the lamin B receptor, and cells homozygous with respect to PHA contain only trace amounts of it. We found that expression of the lamin B receptor affects neutrophil nuclear shape and chromatin distribution in a dose-dependent manner. Our findings have implications for understanding nuclear envelope-heterochromatin interactions, the pathogenesis of Pelger-like conditions in leukemia, infection and toxic drug reactions, and the evolution of neutrophil nuclear shape.
BACKGROUND Genetic and environmental factors interact in determining the risk of venous thromboembolism (VTE). The risk associated with the polymorphic variants G1691A of factor V (Factor V Leiden,FVL), G20210A of prothrombin (PT20210A) and C677T of methylentetrahydrofolate reductase (C677T MTHFR) genes has been investigated in many studies. METHODS We performed a pooled analysis of case-control and cohort studies investigating in adults the association between each variant and VTE, published on Pubmed, Embase or Google through January 2010. Authors of eligible papers, were invited to provide all available individual data for the pooling. The Odds Ratio (OR) for first VTE associated with each variant, individually and combined with the others, were calculated with a random effect model, in heterozygotes and homozygotes (dominant model for FVL and PT20210A; recessive for C677T MTHFR). RESULTS We analysed 31 databases, including 11,239 cases and 21,521 controls. No significant association with VTE was found for homozygous C677T MTHFR (OR: 1.38; 95% confidence intervals [CI]: 0.98–1.93), whereas the risk was increased in carriers of either heterozygous FVL or PT20210 (OR=4.22; 95% CI: 3.35–5.32; and OR=2.79;95% CI: 2.25–3.46, respectively), in double hterozygotes (OR=3.42; 95%CI 1.64-7.13), and in homozygous FVL or PT20210A (OR=11.45; 95%CI: 6.79-19.29; and OR: 2.79; 95%CI: 2.25 – 3.46, respectively). The stratified analyses showed a stronger effect of FVL on individuals ≤45 years (p-value for interaction = 0.036) and of PT20210A in women using oral contraceptives (p-value for interaction = 0.045). CONCLUSIONS In this large pooled analysis, inclusive of large studies like MEGA, no effect was found for C677T MTHFR on VTE; FVL and PT20210A were confirmed to be moderate risk factors. Notably, double carriers of the two genetic variants produced an impact on VTE risk significantly increased but weaker than previously thought.
Endothelial cell protein C receptor (EPCR) enhances the generation of activated protein C (APC) by the thrombin-thrombomodulin complex. A soluble form of EPCR (sEPCR), which is generated by metalloprotease activity, is present in plasma. The distribution of sEPCR levels in healthy populations is bimodal. Previously, we described two polymorphisms in exon 4 of the EPCR gene, 4600A/G that encodes the substitution of Ser219 by Gly in the transmembrane region of EPCR and 4678G/C in the 3'-UT region. The aim of this study was to investigate the relationship between these two polymorphisms and plasma sEPCR and APC levels and risk of venous thrombosis. We genotyped 401 healthy controls from the Spanish population and measured their plasma sEPCR and APC levels. Carriers of the 4600AG genotype had significantly higher sEPCR levels than those with the AA genotype, while the 4678CC genotype was associated, to a lesser extent, with elevated APC levels. To assess the effect of these polymorphisms on the risk of thrombosis, we genotyped 405 patients with venous thromboembolism. The frequency of the 4600AG genotype was very similar in patients and controls (p=0.975), whereas the 4678CC genotype was significantly more frequent in controls than in patients (p=0.008). In multivariate analysis, carriers of the 4678CC genotype had a decreased risk of thrombosis (OR=0.61, p=0.009). These data indicate that individuals carrying the 4600AG genotype have high sEPCR levels but do not have an increased risk of thrombosis, whereas individuals carrying the 4678CC genotype have higher APC levels and lower risk of venous thromboembolism.
Summary. To ascertain the potential contribution of serum lipids to the development of deep vein thrombosis (DVT), a case-control study was conducted in 143 DVT patients lacking thrombophilic risk factors and in 194 age-and sexmatched controls. DVT patients showed significantly higher body mass indices (BMI), and triglyceride levels than did controls (P < 0AE001 and P ¼ 0AE045 respectively). Using multivariate analysis, BMI was the only variable which remained statistically different, thus the risk of DVT was associated with obesity (odds ratio ¼ 2AE49). These results were confirmed when additional control for fibrinogen and plasminogen activator inhibitor type 1 (PAI-1) was carried out in a subgroup of cases and controls. When idiopathic (n ¼ 39) and secondary (n ¼ 104) patients with DVT were compared, the former showed a higher mean age, a higher proportion of men, and higher cholesterol levels. Age, sex and total cholesterol were statistically different by multivariate analysis. After age was dichotomized as ‡ 50 years and cholesterol ‡ 5AE69 mmol/l, all three variables constituted independent risk factors for idiopathic DVT, with odds ratios of 2AE73 for ages ‡ 50 years; 3AE72 for men and 2AE67 for cholesterolaemia ‡ 5AE69 mmol/l. Obesity thus constitutes an independent risk factor for DVT, possibly in part mediated through triglyceride, fibrinogen and PAI-1 effects on haemostasis. In addition, cholesterolaemia levels of ‡ 5AE69 mmol/l constitute an independent risk factor for idiopathic DVT.
The lamin B receptor (LBR) is an inner nuclear membrane protein with a structural function interacting with chromatin and lamins, and an enzymatic function as a sterol reductase. Heterozygous LBR mutations cause nuclear hyposegmentation in neutrophils (Pelger anomaly), while homozygous mutations cause prenatal death with skeletal defects and abnormal sterol metabolism (Greenberg dysplasia). It has remained unclear whether the lethality in Greenberg dysplasia is due to cholesterol defects or altered nuclear morphology.To answer this question we characterized two LBR missense mutations and showed that they cause Greenberg dysplasia. Both mutations affect residues that are evolutionary conserved among sterol reductases. In contrast to wildtype LBR, both mutations failed to rescue C14 sterol reductase deficient yeast, indicating an enzymatic defect. We found no Pelger anomaly in the carrier parent excluding marked effects on nuclear structure. We studied Lbr in mouse embryos and demonstrate expression in skin and the developing skeletal system consistent with sites of histological changes in Greenberg dysplasia. Unexpectedly we found in disease-relevant cell types not only nuclear but also cytoplasmatic LBR localization. The cytoplasmatic LBR staining co-localized with ER-markers and is thus consistent with the sites of endogeneous sterol synthesis.We conclude that LBR missense mutations can abolish sterol reductase activity, causing lethal Greenberg dysplasia but not Pelger anomaly. The findings separate the metabolic from the structural function and indicate that the sterol reductase activity is essential for human intrauterine development. ResultsWe studied three fetuses that all fulfilled the clinical criteria of Greenberg dysplasia, namely intrauterine growth retardation, massive generalized edema (hydrops), extreme shortening of long bones (tetrabrachymelia) with a moth-eaten appearance of tubular bones, ectopic calcification centers and a narrow thorax (Fig. 1A, Suppl. Table 1). Detailed clinical examination was obtained from fetus A; fetus B has been described previously. 25Sterol analyses were performed in muscle tissue of fetus B and revealed the abnormal sterol metabolite 5α-cholest-8,14-dien-3β-ol, 25 that was previously shown to be associated with Greenberg dysplasia.18 Sterol analysis was not available for the other two fetuses.Sequence analysis revealed frameshift and missense mutations in the LBR gene. We sequenced LBR and identified mutations in all three families (Fig. 1B, sequence traces and segregation in Suppl. Fig. 1A). Fetus A showed a homozygous frameshift mutation c.1492delT that is predicted to change residues 468 to 474 and to create a premature stop in codon 475 (p.Y468TfsX475). Fetus B revealed two different mutations, c.32delTGGT and c.1748G>A. The first is a deletion of 4 base pairs causing a frame shift with subsequent premature stop in codon 24 (p.V11EfsX24). The second is a missense mutation replacing arginine by glutamine at residue 583 (R583Q). Both parents of fetus C were carrie...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.