The phosphorus-containing acrylate monomer, 2-acryloyloxyethyl diethyl phosphate (ADEP), was synthesized and applied to cotton fabric by using the admicellar polymerization technique. A cationic surfactant (cetylpyridinium chloride, CPC) was used as the surfactant for admicellar polymerization. Results from FTIR-ATR and SEM showed that PADEP polymer film was successfully formed on the cotton fabric surface. TGA and DTG analyses showed that the phosphoruscontaining PADEP lowered the decomposition temperature of the treated fabric resulting in a higher char yield than in the case of untreated cotton. The flammability tests showed that PADEP-coated cotton with the phosphorus content 4.18 mg/g cotton was self-extinguishing, with the flame extinguishing right after the removal of the ignition source leaving a small area of char formation.
Pt nanoparticles (PtNPs) were synthesized in the presence of a NH(2)-terminated fourth generation poly(amido amine) (PAMAM) dendrimer as a stabilizer at different molar ratios (M:D) of metal precursor to amine terminal group of dendrimer. Subsequently, PtNPs protected by dendrimers (DENPtNPs) were covalently immobilized on multiwalled carbon nanotubes (MWCNTs) by using a condensing agent for amide bond formation between acid-treated MWCNTs and DENPtNPs and the product CNT/DENPtNPs were characterized. PtNPs on MWCNTs increased quantitatively in content with M:D and dispersed with same aspect as the dispersion of DENPtNPs in water: PtNPs homogeneously dispersed at low M:D ratio and slightly aggregated at high ratio. The decomposition of CNT/DENPtNPs occurred at the lower temperature owing to the catalytic effect of PtNPs. A near-infrared absorption band around 2083 nm, which is extremely weak for MWCNTs, was intensified and D, D' and G Raman bands were slightly downshifted when DENPtNPs were attached. These phenomena can be attributed to the electron transfer from DENPtNPs to MWCNTs. Remarkable advantage is apparent from the enhanced electrochemical behavior of CNT/DENPtNPs loaded on gold electrode. PtNPs promoted the electron transfer of MWCNTs and dendrimers contributed to uptake of redox materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.