A new computing paradigm that has been growing in computing systems is fog computing. In the healthcare industry, Internet of Things (IoT) driven fog computing is being developed to speed up the services for the general public and save billions of lives. This new computing platform, based on the fog computing paradigm, may reduce latency when transmitting and communicating signals with faraway servers, allowing medical services to be delivered more quickly in both spatial and temporal dimensions. One of the necessary qualities of computing systems that can enable the completion of healthcare operations is latency reduction. Fog computing can provide reduced latency when compared to cloud computing due to the use of only low-end computers, mobile phones, and personal devices in fog computing. In this paper, a new framework for healthcare monitoring for managing real-time notification based on fog computing has been proposed. The proposed system monitors the patient’s body temperature, heart rate, and blood pressure values obtained from the sensors that are embedded into a wearable device and notifies the doctors or caregivers in real time if there occur any contradictions in the normal threshold value using the machine learning algorithms. The notification can also be set for the patients to alert them about the periodical medications or diet to be maintained by the patients. The cloud layer stores the big data into the cloud for future references for the hospitals and the researchers.
Camera/image-based localization is important for many emerging applications such as augmented reality (AR), mixed reality, robotics, and self-driving. Camera localization is the problem of estimating both camera position and orientation with respect to an object. Use cases for camera localization depend on two key factors: accuracy and speed (latency). Therefore, this paper proposes Depth-DensePose, an efficient deep learning model for 6-degrees-of-freedom (6-DoF) camera-based localization. The Depth-DensePose utilizes the advantages of both DenseNets and adapted depthwise separable convolution (DS-Conv) to build a deeper and more efficient network. The proposed model consists of iterative depth-dense blocks. Each depth dense block contains two adapted DS-Conv with two kernel sizes 3 and 5, which are useful to retain both low-level as well as high-level features. We evaluate the proposed Depth-DensePose on the Cambridge Landmarks dataset, which shows that the Depth-DensePose outperforms the performance of related deep learning models for camera based localization. Furthermore, extensive experiments were conducted which proven the adapted DS-Conv is more efficient than the standard convolution. Especially, in terms of memory and processing time which is important to real-time and mobile applications.
Security attacks become daily news due to an exposure of a security threat in a widely used software. Taking software security into consideration during the analysis, design, and implementation phases is a must. A software application should be protected against any security threat such as unauthorized distribution or code retrieval. Due to the lack of applying a software security standard architecture, developers may create software that may be vulnerable to many types of security threats. This paper begins by reviewing different types of known software security threats and their countermeasure mechanisms. Then, it proposes a new security optimization architecture for software applications. This architecture is a step towards establishing a standard to guarantee the software's security. Furthermore, it proposes an adapted software security optimization architecture for mobile applications. Besides, it presents an algorithmic implementation of the newly proposed architecture, then it proves its security. Moreover, it builds a secure mobile application based on the newly proposed architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.