Probiotics and antioxidants have a definite improving effect in cardiovascular diseases. This study aims at mitigating doxorubicin toxicity on cardiac function through consuming a functional food. Five groups of adult male Sprague-Dawley rats were used along 22 weeks. Group I received 30 g/kg/day food enriched with yogurt, green tea extract, and carrots (80, 0.84, and 100 g/kg diet, respectively) from the first week, group II received carvedilol 30 mg/kg/day orally from week 17, group III received both carvedilol and tested food, and groups IV and V were +ve and -ve control groups, respectively. In week 17, cardiomyopathy was induced by i.p. injection of 2.5 mg/kg doxorubicin every 48 h for 2 weeks. Histopathological and electrophysiological examinations and biochemical analysis were done. Lipid peroxidation, antioxidant effect, heart failure compensatory mediators, and proinflammatory cytokines were assessed. Tested food normalized time between the start of Q wave and the end of T wave on electrocardiogram (QT interval) and heart rate compared to the doxorubicin group (P<.05). It also improved hypertrophy indicated by a significant (P<.05) decrease in heart/body weight ratio, angiotensin-II (Ang-II), and atrial natriuretic peptide (ANP) serum levels. Histopathological examination of cardiac sections from the tested food group revealed less marked vacuolization and low perivascular fibrosis percentage (0.7803 ± 0.04). A significant (P<.001) decrease in serum creatine kinase-membrane bound, lactate dehydrogenase, triglycerides, cholesterol, low-density lipoprotein cholesterol, and tissue malondialdehyde (MDA) levels was observed in addition to an increase in serum Na(+)/K(+) ATP1A1 and cardiac reduced glutathione (GSH) levels. Tested food also lowered the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) serum levels significantly (P<.01). Probiotic food containing Lactobacillus acidophilus, green tea, and carrots can improve membrane integrity and cardiac contractility in doxorubicin-induced cardiomyopathy by decreasing TNF-α, IL-6, MDA, increasing GSH, and modulating compensatory mediators such as Ang-II and ANP.