Mitochondrial dysfunction plays an important role in brain aging and has emerged to be an early event in Alzheimer's disease (AD), contributing to neurodegeneration and the loss of physical abilities seen in patients suffering from this disease. We examined mitochondrial dysfunction in a cell culture model of AD (PC12APPsw cells) releasing very low amyloid-β (Aβ40) levels and thus mimicking early AD stages. Our data show that these cells have impaired energy metabolism, low ATP levels, and decreased endogenous mitochondrial respiration. Furthermore, protein levels of PGC1α as well as of Mitofusin 1 were decreased. PC12APPsw cells also showed increased mitochondrial content, probably due to an attempt to compensate the impaired mitochondrial function. Recent data showed that stabilized rice bran extract (RBE) protects from mitochondrial dysfunction in vivo Pharmacol Res. (2013) 76C, 17-27. To assess the effect of RBE on mitochondrial function, we treated PC12APPsw cells for 24 h with RBE. Key components of RBE are oryzanols, tocopherols, and tocotrienols, all substances that have been found to exert beneficial effects on mitochondrial function. RBE incubation elevated ATP production and respiratory rates as well as PGC1α protein levels in PC12APPsw cells, thus improving the impaired mitochondrial function assessed in our cell culture AD model. Therefore, RBE represents to be a promising nutraceutical for the prevention of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.