We present META-MT, a meta-learning approach to adapt Neural Machine Translation (NMT) systems in a few-shot setting. META-MT provides a new approach to make NMT models easily adaptable to many target domains with the minimal amount of in-domain data. We frame the adaptation of NMT systems as a meta-learning problem, where we learn to adapt to new unseen domains based on simulated offline meta-training domain adaptation tasks. We evaluate the proposed metalearning strategy on ten domains with general large scale NMT systems. We show that META-MT significantly outperforms classical domain adaptation when very few indomain examples are available. Our experiments shows that META-MT can outperform classical fine-tuning by up to 2.5 BLEU points after seeing only 4, 000 translated words (300 parallel sentences).
A 35-year-old Kuwaiti field worker presented with a history of an asymptomatic, erythematous plaque on the right side of the nasal bridge. It soon extended to the malar area, being studded with multiple yellowish papules (Fig. 1). He denied any history of photosensitivity, drug intake, local trauma, topical applications, or ionizing radiations to that area. Examination revealed an erythematous, 1.5 x 3 cm plaque on the right nasal fold, extending to the malar area, overlain by a group of tiny yellowish papules (15-20 in number). He also had a few discrete milia on the right cheek. The histology (Fig. 2) revealed multiple keratin-filled cysts, surrounded by a dense lymphocytic infiltrate, findings consistent with milia; 0.05% tretinoin was prescribed twice daily for 1 month without improvement; minocycline, 100 mg daily, was then employed, and at 1 month of follow-up there was a significant decrease in erythema and milia count.
Generative Pre-trained Transformer (GPT) models have shown remarkable capabilities for natural language generation, but their performance for machine translation has not been thoroughly investigated. In this paper, we present a comprehensive evaluation of GPT models for machine translation, covering various aspects such as quality of different GPT models in comparison with stateof-the-art research and commercial systems, effect of prompting strategies, robustness towards domain shifts and document-level translation. We experiment with eighteen different translation directions involving high and low resource languages, as well as non English-centric translations, and evaluate the performance of three GPT models: ChatGPT, GPT3.5 (text-davinci-003), and text-davinci-002. Our results show that GPT models achieve very competitive translation quality for high resource languages, while having limited capabilities for low resource languages. We also show that hybrid approaches, which combine GPT models with other translation systems, can further enhance the translation quality. We perform comprehensive analysis and human evaluation to further understand the characteristics of GPT translations. We hope that our paper provides valuable insights for researchers and practitioners in the field and helps to better understand the potential and limitations of GPT models for translation.
Imitation learning algorithms provide state-ofthe-art results on many structured prediction tasks by learning near-optimal search policies. Such algorithms assume training-time access to an expert that can provide the optimal action at any queried state; unfortunately, the number of such queries is often prohibitive, frequently rendering these approaches impractical. To combat this query complexity, we consider an active learning setting in which the learning algorithm has additional access to a much cheaper noisy heuristic that provides noisy guidance. Our algorithm, LEAQI, learns a difference classifier that predicts when the expert is likely to disagree with the heuristic, and queries the expert only when necessary. We apply LEAQI to three sequence labeling tasks, demonstrating significantly fewer queries to the expert and comparable (or better) accuracies over a passive approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.