In a novel attempt to understand the variations in DNA sequences underlying HLA class I alleles associated with HPV16-related CaCx, we determined the alleles by reconstructing SNP-based haplotypes from resequencing of the most polymorphic exons 2 and 3 of HLA-A, HLA-B and HLA-C. We also determined the impact of SNPs and transcriptional alterations of the genes on CaCx. A high density of SNPs was identified from resequencing. HLA expression was determined by real-time PCR. We identified that even a single associated HLA allele had many underlying SNP-based haplotypes. Out of the most frequent (≥5%) HLA class I alleles, HLA-B*40:06 and HLA-B*15:02 respectively imparted significant risk towards and protection from CaCx as well as HPV16 infection. Employing median-joining networks to detect clusters of sequence-variations for specific HLA alleles, we found the protective SNP-based signature, GAATTTA, in all SNP-based haplotypes of HLA-B*15:02 allele. The signature was derived from seven SNPs within HLA-B which were newly associated with the disease. Contrarily, similarly derived risk-signature, TTGCGCC, mapped only to 52% of SNP-based haplotypes of HLA-B*40:06 allele. This indicated that all SNP-based haplotypes underlying a particular associated HLA allele might or might not have a single signature of risk/protection. HLA-A, HLA-B and HLA-C expressions were downregulated among CaCx cases compared to asymptomatic infections and HPV-negative controls. HLA-A and HLA-B were repressed in both cases harbouring episomal and integrated HPV16, whereas HLA-C in only the latter. Novel genetic variations and differential downregulation-patterns of HLA class I have a significant bearing on HPV16-related CaCx pathogenesis.
Epigenetic alterations within human papillomavirus (HPV) and host cellular genomes are known to occur during cervical carcinogenesis. Our objective was to analyse the influence of (1) methylation within two immunostimulatory CpG motifs within HPV16 E6 and E7 genes around the viral late promoter and their correlation, if any, with expression deregulation of host receptor (TLR9) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and (2) global DNA methylation levels within CpGs of the repetitive Alu sequences, on cervical cancer (CaCx) pathogenesis. Significantly higher proportions of CaCx samples portrayed methylation in immunostimulatory CpG motifs, compared to HPV16-positive non-malignant samples, with cases harbouring episomal HPV16 showing decreased methylation compared to those with viral integration. A significant linear trend of TLR9 upregulation was recorded in the order of HPV-negative controls < HPV16-positive non-malignant samples < HPV16-positive CaCx cases. TLR9 upregulation in cases with episomal HPV16 was again higher among those with non-methylated immunostimulatory CpG motifs. Comparison of cases with HPV-negative controls revealed that DNMT3A was significantly downregulated only among integrated cases, DNMT3B was significantly overexpressed among both categories of cases, although at variable levels, while DNMT1 failed to show any deregulated expression among the cases. Global host DNA hypomethylation, also showed a significant linear increasing trend through the progressive CaCx development stages mentioned above and was most prominently higher among cases with episomal HPV16 as opposed to viral integration. Thus, HPV16 and host methylations appear to influence CaCx pathogenesis, with differential molecular signatures among CaCx cases with episomal and integrated HPV16.
Heterogeneity in cervical cancers (CaCx) in terms of HPV16 physical status prompted us to investigate the mRNA and miRNA signatures among the different categories of CaCx samples. We performed microarray-based mRNA expression profiling and quantitative real-time PCR-based expression analysis of some prioritised miRNAs implicated in cancer-related pathways among various categories of cervical samples. Such samples included HPV16-positive CaCx cases that harboured either purely integrated HPV16 genomes (integrated) and those that harboured episomal viral genomes, either pure or concomitant with integrated viral genomes (episomal), which were compared with normal cervical samples that were either HPV negative or positive for HPV16. The mRNA expression profile differed characteristically between integrated and episomal CaCx cases for enriched biological pathways. miRNA expression profiles also differed among CaCx cases compared with controls (upregulation—miR-21, miR-16, miR-205, miR-323; downregulation—miR-143, miR-196b, miR-203, miR-34a; progressive upregulation—miR-21 and progressive downregulation—miR-143, miR-34a, miR-196b and miR-203) in the order of HPV-negative controls, HPV16-positive non-malignant samples and HPV16-positive CaCx cases. miR-200a was upregulated in HPV16-positive cervical tissues irrespective of histopathological status. Expression of majority of the predicted target genes was negatively correlated with their corresponding miRNAs, irrespective of the CaCx subtypes. E7 mRNA expression correlated positively with miR-323 expression among episomal cases and miR-203, among integrated cases. miR-181c expression was downregulated only among the episomal CaCx cases and negatively correlated with protein coding transcript of the proliferative target gene, CKS1B of the significantly enriched “G2/M DNA Damage Checkpoint Regulation” pathway among CaCx cases. Thus, the two CaCx subtypes are distinct entities at the molecular level, which could be differentially targeted for therapy. In fact, availability of a small molecule inhibitor of CKS1B, suggests that drugging CKS1B could be a potential avenue of treating the large majority of CaCx cases harbouring episomal HPV16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.