The αvβ3 integrin is known to be highly up-regulated during cancer progression and promotes a migratory and metastatic phenotype in many types of tumors. We hypothesized that the αvβ3 integrin is transferred through exosomes and, upon transfer, has the ability to support functional aberrations in recipient cells. Here, for the first time, it is demonstrated that αvβ3 is present in exosomes released from metastatic PC3 and CWR22Pc prostate cancer cells. Exosomal αvβ3 is transferred as a protein from donor to non-tumorigenic and tumorigenic cells since the β3 protein or mRNA levels remain unaffected upon transcription and translation inhibition in recipient cells. Furthermore, it is shown that upon exosome uptake, de novo expression of αvβ3 increases adhesion and migration of recipient cells on αvβ3 ligand, vitronectin. To evaluate the relevance of these findings, exosomes were purified from the blood of TRAMP mice carrying tumors where the expression of αvβ3 is found higher than in exosomes from wild-type mice. In addition, it is demonstrated that αvβ3 is co-expressed with synaptophysin, a biomarker for aggressive neuroendocrine prostate cancer.
Implications
Overall this study reveals that the αvβ3 integrin is transferred from tumorigenic to non-tumorigenic and cancer cells via exosomes, and its de novo expression in recipient cells promotes cell migration on its ligand. The increased expression of αvβ3 in exosomes from mice bearing tumors points to its clinical relevance and potential use as a biomarker.
The αvβ3 integrin has been shown to promote aggressive phenotypes in many types of cancers, including prostate cancer. We show that GFP-labeled αvβ3 derived from cancer cells circulates in the blood and is detected in distant lesions in NOD scid gamma (NSG) mice. We, therefore, hypothesized that αvβ3 travels through exosomes and tested its levels in pools of vesicles, which we designate extracellular vesicles highly enriched in exosomes (ExVs), and in exosomes isolated from the plasma of prostate cancer patients. Here, we show that the αvβ3 integrin is found in patient blood exosomes purified by sucrose or iodixanol density gradients. In addition, we provide evidence that the αvβ3 integrin is transferred through ExVs isolated from prostate cancer patient plasma to β3-negative recipient cells. We also demonstrate the intracellular localization of β3-GFP transferred via cancer cell-derived ExVs. We show that the ExVs present in plasma from prostate cancer patients contain higher levels of αvβ3 and CD9 as compared to plasma ExVs from age-matched subjects who are not affected by cancer. Furthermore, using PSMA antibody-bead mediated immunocapture, we show that the αvβ3 integrin is expressed in a subset of exosomes characterized by PSMA, CD9, CD63, and an epithelial-specific marker, Trop-2. Finally, we present evidence that the levels of αvβ3, CD63, and CD9 remain unaltered in ExVs isolated from the blood of prostate cancer patients treated with enzalutamide. Our results suggest that detecting exosomal αvβ3 integrin in prostate cancer patients could be a clinically useful and non-invasive biomarker to follow prostate cancer progression. Moreover, the ability of αvβ3 integrin to be transferred from ExVs to recipient cells provides a strong rationale for further investigating the role of αvβ3 integrin in the pathogenesis of prostate cancer and as a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.