Adaptive resistance to MEK inhibitors (MEKi) typically occurs via induction of genes for different receptor tyrosine kinases (RTK) and/or their ligands, even in tumors of the same histotype, making combination strategies challenging. SHP2 () is required for RAS/ERK pathway activation by most RTKs and might provide a common resistance node. We found that combining the SHP2 inhibitor SHP099 with a MEKi inhibited the proliferation of multiple cancer cell lines knockdown/MEKi treatment had similar effects, whereas expressing SHP099 binding-defective mutants conferred resistance, demonstrating that SHP099 is on-target. SHP099/trametinib was highly efficacious in xenograft and/or genetically engineered models of -mutant pancreas, lung, and ovarian cancers and in wild-type RAS-expressing triple-negative breast cancer. SHP099 inhibited activation of KRAS mutants with residual GTPase activity, impeded SOS/RAS/MEK/ERK1/2 reactivation in response to MEKi, and blocked ERK1/2-dependent transcriptional programs. We conclude that SHP099/MEKi combinations could have therapeutic utility in multiple malignancies. MEK inhibitors show limited efficacy as single agents, in part because of the rapid development of adaptive resistance. We find that SHP2/MEK inhibitor combinations prevent adaptive resistance in multiple cancer models expressing mutant and wild-type KRAS. .
KRAS is the most frequently mutated human oncogene, and KRAS inhibition has been a longtime goal. Recently, inhibitors were developed that bind KRASG12C-GDP and react with Cys-12 (G12C-Is). Using new affinity reagents to monitor KRASG12C activation and inhibitor engagement, we found that an SHP2 inhibitor (SHP2-I) increases KRAS-GDP occupancy, enhancing G12C-I efficacy. The SHP2-I abrogated RTK feedback signaling and adaptive resistance to G12C-Is in vitro, in xenografts, and in syngeneic KRASG12C-mutant pancreatic ductal adenocarcinoma (PDAC) and non–small cell lung cancer (NSCLC). SHP2-I/G12C-I combination evoked favorable but tumor site–specific changes in the immune microenvironment, decreasing myeloid suppressor cells, increasing CD8+ T cells, and sensitizing tumors to PD-1 blockade. Experiments using cells expressing inhibitor-resistant SHP2 showed that SHP2 inhibition in PDAC cells is required for PDAC regression and remodeling of the immune microenvironment but revealed direct inhibitory effects on tumor angiogenesis and vascularity. Our results demonstrate that SHP2-I/G12C-I combinations confer a substantial survival benefit in PDAC and NSCLC and identify additional potential combination strategies.
The αvβ3 integrin is known to be highly up-regulated during cancer progression and promotes a migratory and metastatic phenotype in many types of tumors. We hypothesized that the αvβ3 integrin is transferred through exosomes and, upon transfer, has the ability to support functional aberrations in recipient cells. Here, for the first time, it is demonstrated that αvβ3 is present in exosomes released from metastatic PC3 and CWR22Pc prostate cancer cells. Exosomal αvβ3 is transferred as a protein from donor to non-tumorigenic and tumorigenic cells since the β3 protein or mRNA levels remain unaffected upon transcription and translation inhibition in recipient cells. Furthermore, it is shown that upon exosome uptake, de novo expression of αvβ3 increases adhesion and migration of recipient cells on αvβ3 ligand, vitronectin. To evaluate the relevance of these findings, exosomes were purified from the blood of TRAMP mice carrying tumors where the expression of αvβ3 is found higher than in exosomes from wild-type mice. In addition, it is demonstrated that αvβ3 is co-expressed with synaptophysin, a biomarker for aggressive neuroendocrine prostate cancer.
Implications
Overall this study reveals that the αvβ3 integrin is transferred from tumorigenic to non-tumorigenic and cancer cells via exosomes, and its de novo expression in recipient cells promotes cell migration on its ligand. The increased expression of αvβ3 in exosomes from mice bearing tumors points to its clinical relevance and potential use as a biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.