We consider a scenario consisting of a set of heterogeneous mobile agents located at a depot, and a set of tasks dispersed over a geographic area. The agents are partitioned into different types. The tasks are partitioned into specialized tasks that can only be done by agents of a certain type, and generic tasks that can be done by any agent. The distances between each pair of tasks are specified, and satisfy the triangle inequality. Given this scenario, we address the problem of allocating these tasks among the available agents (subject to type compatibility constraints) while minimizing the maximum cost to tour the allocation by any agent and return to the depot. This problem is NP-hard, and we give a three phase algorithm to solve this problem that provides 5-factor approximation, regardless of the total number of agents and the number of agents of each type. We also show that in the special case where there is only one agent of each type, the algorithm has an approximation factor of 4. * * Amritha Prasad and Shreyas Sundaram are with the School of Electrical and Computer Engineering at Purdue University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.