We consider an intelligent agent seeking to obtain an item from one of several physical locations, where the cost to obtain the item at each location is stochastic. We study risk-aware stochastic physical search (RA-SPS), where both the cost to travel and the cost to obtain the item are taken from the same budget and where the objective is to maximize the probability of success while minimizing the required budget. This type of problem models many task-planning scenarios, such as space exploration, shopping, or surveillance. In these types of scenarios, the actual cost of completing an objective at a location may only be revealed when an agent physically arrives at the location, and the agent may need to use a single resource to both search for and acquire the item of interest. We present exact and heuristic algorithms for solving RA-SPS problems on complete metric graphs. We first formulate the problem as mixed integer linear programming problem. We then develop custom branch and bound algorithms that result in a dramatic reduction in computation time. Using these algorithms, we generate empirical insights into the hardness landscape of the RA-SPS problem and compare the performance of several heuristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.