Peptide amphiphile (PA) nanofibers formed by self-assembly can be customized for specific applications in regenerative medicine through the use of molecules that display bioactive signals on their surfaces. We report here on the use of PA nanofibers with binding affinity for the bone promoting growth factor BMP-2 to create a gel scaffold for osteogenesis. With the objective of reducing the amount of BMP-2 used clinically for successful arthrodesis in the spine, we used amounts of growth factor incorporated in the scaffolds that are 10 to 100 times lower than that those used clinically in collagen scaffolds. The efficacy of the bioactive PA system to promote BMP-2-induced osteogenesis in vivo was investigated in a rat posterolateral lumbar intertransverse spinal fusion model. PA nanofiber gels displaying BMP-2-binding segments exhibited superior spinal fusion rates relative to controls, effectively decreasing the required therapeutic dose of BMP-2 by ten-fold. Interestingly, a 42% fusion rate was observed for gels containing the bioactive nanofibers without the use of exogenous BMP-2, suggesting the ability of the nanofiber to recruit endogenous growth factor. Results obtained here demonstrate that bioactive biomaterials with capacity to bind specific growth factors by design are great targets for regenerative medicine.
Thyroid cancer is the most common endocrine neoplasm, and its rate is rising at an alarming pace. Thus, there is a compelling need to develop in vivo models which will not only enable the confirmation of the oncogenic potential of driver genes, but also point the way towards the development of new therapeutics. Over the past 20 years, techniques for the generation of mouse models of human diseases have progressed substantially, accompanied by parallel advances in the genetics and genomics of human tumors. This convergence has enabled the development of mouse lines carrying mutations in the genes that cause thyroid cancers of all subtypes, including differentiated papillary and follicular thyroid cancers, poorly differentiated/anaplastic cancers, and medullary thyroid cancers. In this review, we will discuss the state of the art of mouse modeling of thyroid cancer, with the eventual goal of providing insight into tumor biology and treatment.
Development of a pharmacologic agent that reduces the adverse effects of cigarette smoke on bone-healing could prove useful to orthopaedic surgeons. Since dioxin and other similar cigarette smoke toxins exert their effects through Ahr pathway activation, the receptor represents a potential therapeutic target to improve spinal fusion rates in patients who smoke.
Due to differing compositions, synthetic scaffolds developed for bone regeneration vary widely in efficacy. To quantify the impact of such differences on osteoinductivity, numerous parameters were examined. Absorbable collagen sponge (ACS), three ceramic-based carriers (#1-3) of varying compositions, mineralized allograft chips, and an experimental phosphoserine-rich nanofiber scaffold [S(P) gel] were compared in their ability to promote cell adhesion, proliferation/survival, growth factor binding/release, and osteogenic gene expression. Human preosteoblasts were found to adhere most efficiently to the S(P) gel, and the growth/survival was greatest on the S(P) and ACS scaffolds, with minimal growth seen on the allograft and Ceramic #3. In bone morphogenetic protein-2 (BMP-2) binding/release assays, ACS demonstrated a burst release pattern, whereas the allograft and the ceramics inefficiently released BMP-2. The S(P) gel showed the most ideal rates of growth factor binding and release. QPCR analyses showed significant differences in the CXCL12, CXCR4, and RANKL transcripts among the cells grown on these various scaffolds. Although some scaffolds showed an advantage over others in individual parameters, the nanofiber gel appears to provide the optimal balance in the factors important to osteoinductivity evaluated here.
This study demonstrate that PKA signaling to Rap1b is a key signaling node for follicular thyroid carcinogenesis, while Epac1 activity is not required for tumor development. This work sheds new light on the pathways involved in FTC development and identifies a possible target for the development of new therapies in the treatment of FTC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.