Significance: Non-contact, camera-based heart rate variability estimation is desirable in numerous applications, including medical, automotive, and entertainment. Unfortunately, camerabased HRV accuracy and reliability suffer due to two challenges: (a) darker skin tones result in lower SNR and (b) relative motion induces measurement artifacts. Aim: We propose an algorithm HRVCam that provides sufficient robustness to low SNR and motion-induced artifacts commonly present in imaging photoplethysmography (iPPG) signals. Approach: HRVCam computes camera-based HRV from the instantaneous frequency of the iPPG signal. HRVCam uses automatic adaptive bandwidth filtering along with discrete energy separation to estimate the instantaneous frequency. The parameters of HRVCam use the observed characteristics of HRV and iPPG signals. Results: We capture a new dataset containing 16 participants with diverse skin tones. We demonstrate that HRVCam reduces the error in camera-based HRV metrics significantly (more than 50% reduction) for videos with dark skin and face motion. Conclusion: HRVCam can be used on top of iPPG estimation algorithms to provide robust HRV measurements making camera-based HRV practical.
Over the last few years, camera-based estimation of vital signs referred to as imaging photoplethysmography (iPPG) has garnered significant attention due to the relative simplicity, ease, unobtrusiveness and flexibility offered by such measurements. It is expected that iPPG may be integrated into a host of emerging applications in areas as diverse as autonomous cars, neonatal monitoring, and telemedicine. In spite of this potential, the primary challenge of non-contact camera-based measurements is the relative motion between the camera and the subjects. Current techniques employ 2D feature tracking to reduce the effect of subject and camera motion but they are limited to handling translational and in-plane motion. In this paper, we study, for the first-time, the utility of 3D face tracking to allow iPPG to retain robust performance even in presence of out-of-plane and large relative motions. We use a RGB-D camera to obtain 3D information from the subjects and use the spatial and depth information to fit a 3D face model and track the model over the video frames. This allows us to estimate correspondence over the entire video with pixel-level accuracy, even in the presence of out-of-plane or large motions. We then estimate iPPG from the warped video data that ensures per-pixel correspondence over the entire window-length used for estimation. Our experiments demonstrate improvement in robustness when head motion is large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.