Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly tracking, emergency management, and so on. Trilateration-based localization using received signal strength measurements is widely used in wireless sensor network–based localization and tracking systems due to its simplicity and low computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localization error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural Network–based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, centroid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization performance as compared to trilateration, and Generalized Regression Neural Network algorithm.
The indoor object tracking by utilizing received signal strength indicator (RSSI) measurements with the help of wireless sensor network (WSN) is an interesting and important topic in the domain of location-based applications. Without the knowledge of location, the measurements obtained with WSN are of no use. The trilateration is a widely used technique to get location updates of target based on RSSI measurements from WSN. However, it suffers with high location estimation errors arising due to random variations in RSSI measurements. This paper presents a range-free radial basis function neural network (RBFN) and Kalman filtering- (KF-) based algorithm named RBFN+KF. The performance of the RBFN+KF algorithm is evaluated using simulated RSSIs and is compared against trilateration, multilayer perceptron (MLP), and RBFN-based estimations. The simulation results reveal that the proposed RBFN+KF algorithm shows very low location estimation errors compared to the rest of the three approaches. Additionally, it is also seen that RBFN-based approach is more energy efficient than trilateration and MLP-based localization approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.