Aim: To gain a greater understanding of the ecology and metabolic potential of the rumen microbiome with the changes in the animal diet. Methods: Diet composed of varying proportion of green and dry roughages along with grains was given to 8 Mehsani buffaloes, and rumen metagenome was sketched using shotgun semiconductor sequencing. Results: In the present study, the Bacteroidetes were found to be dominant at the phyla level and Prevotella at the genus level. The ratio of Firmicutes to Bacteroidetes was found to be higher in the solid fraction as compared to the liquid fraction. In the solid fraction of the dry roughage group, the significant increment (p < 0.05) in Bacteroidetes abundance was observed with increment of roughage concentration. At the genus level, Clostridium significantly increased with the increment in roughage concentration. A comparison of glycoside hydrolase and cellulosome functional genes revealed more glycoside hydrolase 3 encoding genes with higher fiber diet and significant difference in carbohydrate-active enzymes family composition between green and dry roughage groups of the liquid fraction. Conclusion: The present study provides a base to understand the modulating behavior of microbiota which can be manipulated to improve livestock nutrient utilization efficiency and for targeting the efficient catabolism of complex carbohydrate molecules as well.
Present study described rumen microbiome of Indian cattle (Kankrej breed) to better understand the microbial diversity and largely unknown functional capacity of the rumen microbiome under different dietary treatments. Kankrej cattle were gradually adapted to a high-forage diet (four animals with dry forage and four with green forage) containing 50 % (K1), 75 % (K2) to 100 % (K3) forage, and remaining concentrate diet, each for 6 weeks followed by analysis of rumen fiber adherent and fiber-free metagenomic community by shotgun sequencing using ion torrent PGM platform and EBI-metagenomics annotation pipeline. Taxonomic analysis indicated that rumen microbiome was dominated by Bacteroidetes followed by Firmicutes, Fibrobacter, Proteobacteria, and Tenericutes. Functional analysis based on gene ontology classified all reads in total 157 categories based on their functional role in biological, molecular, and cellular component with abundance of genes associated with hydrolase activity, membrane, transport, transferase, and different metabolism (such as carbohydrate and protein). Statistical analysis using STAMP revealed significant differences (P < 0.05) between solid and liquid fraction of rumen (in 65 categories), between all three treatments (in 56 categories), and between green and dry roughage (17 categories). Diet treatment also exerted significant difference in environmental gene tags (EGTs) involved in metabolic pathways for production of volatile fatty acids. EGTs for butyrate production were abundant in K2, whereas EGTs for propionate production was abundant during K1. Principal component analysis also demonstrated that diet proportion, fraction of rumen, and type of forage affected rumen microbiome at taxonomic as well as functional level.
Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dormancy and Sporulation in Mehsani buffalo rumen metagenome. The research findings revealed the abundance of bacteria at the domain level and presence of Dormancy and Sporulation genes which were predominantly associated with the Clostridia and Bacilli taxa belonging to the phyla Firmicutes. Genes associated with Sporulation cluster and Sporulation orphans were increased from 50% to 100% roughage treatment, thereby promoting sporulation all along the treatments. The spore germination is observed to be the highest in the 75% roughage treatment both in the liquid and solid rumen fraction samples with respect to the decrease in the values of the genes associated with spore core dehydration, thereby facilitating spore core hydration which is necessary for spore germination.
In India, during the second wave of the COVID-19 pandemic, the breakthrough infections were mainly caused by the SARS-COV-2 delta variant (B.1.617.2). It was reported that, among majority of the infections due to the delta variant, only 9.8% percent cases required hospitalization, whereas only 0.4% fatality was observed. Sudden dropdown in COVID-19 infections cases were observed within a short timeframe, suggesting better host adaptation with evolved delta variant. Downregulation of host immune response against SARS-CoV-2 by ORF8 induced MHC-I degradation has been reported earlier. The Delta variant carried mutations (deletion) at Asp119 and Phe120 amino acids which are critical for ORF8 dimerization. The deletions of amino acids Asp119 and Phe120 in ORF8 of delta variant resulted in structural instability of ORF8 dimer caused by disruption of hydrogen bonds and salt bridges as revealed by structural analysis and MD simulation studies. Further, flexible docking of wild type and mutant ORF8 dimer revealed reduced interaction of mutant ORF8 dimer with MHC-I as compared to wild-type ORF8 dimer with MHC-1, thus implicating its possible role in MHC-I expression and host immune response against SARS-CoV-2. We thus propose that mutant ORF8 of SARS-CoV-2 delta variant may not be hindering the MHC-I expression thereby resulting in a better immune response against the SARS-CoV-2 delta variant, which partly explains the possible reason for sudden drop of SARS-CoV-2 infection rate in the second wave of SARS-CoV-2 predominated by delta variant in India. Armi M. Chaudhari and Indra Singh authors are contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.