The ruminal microbiome in herbivores plays a dominant role in the digestion of lignocellulose and has potential to improve animal productivity. Kankrej cattle, a popular native breed of the Indian subcontinent, were used to investigate the effect of different dietary treatments on the bacterial diversity in ruminal fractions using different primer pairs. Two groups of four cows were assigned to two primary diets of either dry or green forages. Each group was fed one of three dietary treatments for six weeks each. Dietary treatments were; K1 (50% dry/green roughage: 50% concentrate), K2 (75% dry/green roughage: 25% concentrate) and K3 (100% dry/green roughage). Rumen samples were collected using stomach tube at the end of each dietary period and separated into solid and liquid fractions. The DNA was extracted and amplified for V1–V3, V4–V5 and V6–V8 hypervariable regions using P1, P2 and P3 primer pairs, sequenced on a 454 Roche platform and analyzed using QIIME. Community compositions and the abundance of most bacterial lineages were driven by interactions between primer pair, dietary treatment and fraction. The most abundant bacterial phyla identified were Bacteroidetes and Firmicutes however, the abundance of these phyla varied between different primer pairs; in each primer pair the abundance was dependent on the dietary treatment and fraction. The abundance of Bacteroidetes in cattle receiving K1 treatment indicate their diverse functional capabilities in the digestion of both carbohydrate and protein while the predominance of Firmicutes in the K2 and K3 treatments signifies their metabolic role in fibre digestion. It is apparent that both liquid and solid fractions had distinct bacterial community patterns (P<0.001) congruent to changes in the dietary treatments. It can be concluded that the P1 primer pair flanking the V1–V3 hyper-variable region provided greater species richness and diversity of bacterial populations in the rumen of Kankrej cattle.
Aim: To gain a greater understanding of the ecology and metabolic potential of the rumen microbiome with the changes in the animal diet. Methods: Diet composed of varying proportion of green and dry roughages along with grains was given to 8 Mehsani buffaloes, and rumen metagenome was sketched using shotgun semiconductor sequencing. Results: In the present study, the Bacteroidetes were found to be dominant at the phyla level and Prevotella at the genus level. The ratio of Firmicutes to Bacteroidetes was found to be higher in the solid fraction as compared to the liquid fraction. In the solid fraction of the dry roughage group, the significant increment (p < 0.05) in Bacteroidetes abundance was observed with increment of roughage concentration. At the genus level, Clostridium significantly increased with the increment in roughage concentration. A comparison of glycoside hydrolase and cellulosome functional genes revealed more glycoside hydrolase 3 encoding genes with higher fiber diet and significant difference in carbohydrate-active enzymes family composition between green and dry roughage groups of the liquid fraction. Conclusion: The present study provides a base to understand the modulating behavior of microbiota which can be manipulated to improve livestock nutrient utilization efficiency and for targeting the efficient catabolism of complex carbohydrate molecules as well.
Present study described rumen microbiome of Indian cattle (Kankrej breed) to better understand the microbial diversity and largely unknown functional capacity of the rumen microbiome under different dietary treatments. Kankrej cattle were gradually adapted to a high-forage diet (four animals with dry forage and four with green forage) containing 50 % (K1), 75 % (K2) to 100 % (K3) forage, and remaining concentrate diet, each for 6 weeks followed by analysis of rumen fiber adherent and fiber-free metagenomic community by shotgun sequencing using ion torrent PGM platform and EBI-metagenomics annotation pipeline. Taxonomic analysis indicated that rumen microbiome was dominated by Bacteroidetes followed by Firmicutes, Fibrobacter, Proteobacteria, and Tenericutes. Functional analysis based on gene ontology classified all reads in total 157 categories based on their functional role in biological, molecular, and cellular component with abundance of genes associated with hydrolase activity, membrane, transport, transferase, and different metabolism (such as carbohydrate and protein). Statistical analysis using STAMP revealed significant differences (P < 0.05) between solid and liquid fraction of rumen (in 65 categories), between all three treatments (in 56 categories), and between green and dry roughage (17 categories). Diet treatment also exerted significant difference in environmental gene tags (EGTs) involved in metabolic pathways for production of volatile fatty acids. EGTs for butyrate production were abundant in K2, whereas EGTs for propionate production was abundant during K1. Principal component analysis also demonstrated that diet proportion, fraction of rumen, and type of forage affected rumen microbiome at taxonomic as well as functional level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.