The separation of hydrogen sulfide (H2S) from gas streams has significant economic and environmental repercussions for the oil and gas industries. The present work reviews H2S separation via nonreactive and reactive adsorption from various industrial gases, focusing on the most commonly used materials i.e., natural or synthetic zeolites, activated carbons, and metal oxides. In respect to cation-exchanged zeolites, attention should also be paid to parameters such as structural and performance regenerability, low adsorption temperatures, and thermal conductivities, in order to create more efficient materials in terms of H2S adsorption. Although in the literature it is reported that activated carbons can generally achieve higher adsorption capacities than zeolites and metal oxides, they exhibit poor regeneration potential. Future work should mainly focus on finding the optimum temperature, solvent concentration, and regeneration time in order to increase regeneration efficiency. Metal oxides have also been extensively used as adsorbents for hydrogen sulfide capture. Among these materials, ZnO and Cu–Zn–O have been studied the most, as they seem to offer improved H2S adsorption capacities. However, there is a clear lack of understanding in relation to the basic sulfidation mechanisms. The elucidation of these reaction mechanisms will be a toilsome but necessary undertaking in order to design materials with high regenerative capacity and structural reversibility.
The removal of the environmentally toxic and corrosive hydrogen sulfide (H2S) from gas streams with varying overall pressure and H2S concentration is a long-standing challenge faced by the oil and gas industries. The present work focuses on H2S capture using a relatively new type of material, namely metal-organic frameworks (MOFs), in an effort to shed light on their potential as adsorbents in the field of gas storage and separation. MOFs hold great promise as they make possible the design of structures from organic and inorganic units, but also as they have provided an answer to a long-term challenging objective, i.e., how to design extended structures of materials. Moreover, in designing MOFs, one may functionalize the organic units and thus, in essence, create pores with different functionalities, and also to expand the pores in order to increase pore openings. The work presented herein provides a detailed discussion, by thoroughly combining the existing literature on new developments in MOFs for H2S removal, and tries to provide insight into new areas for further research.
In the work presented herein, a joint experimental and theoretical approach has been carried out to obtain an insight into the desulfurization performance of an industrial molecular sieve (IMS), resembling a zeolitic structure with a morphology of cubic crystallites and a high surface area of 590 m 2 g –1 , with a view to removing H 2 S from biogas. The impact of temperature, H 2 S inlet concentration, gas matrix, and regeneration cycles on the desulfurization performance of the IMS was thoroughly probed. The adsorption equilibrium, sorption kinetics, and thermodynamics were also examined. Experimental results showed that the relationship between H 2 S uptake and temperature increase was inversely proportional. Higher H 2 S initial concentrations led to lower breakpoints. The presence of CO 2 negatively affected the desulfurization performance. The IMS was fully regenerated after 15 adsorption/desorption cycles. Theoretical studies revealed that the Langmuir isotherm better described the sorption behavior, pore diffusion was the controlling step of the process (Bangham model), and that the activation energy was 42.7 kJ mol –1 (physisorption). Finally, the thermodynamic studies confirmed that physisorption predominated.
For the work presented herein nickel catalysts supported on γ-alumina extrudates (Ni/Al) with an egg-shell structure were prepared, using a modified Equilibrium Deposition Filtration (EDF) technique. Their performance was compared, for the biogas dry reforming reaction, with corresponding Ni/Al catalysts with a uniform structure, synthesized via the conventional wet impregnation method. The bulk and surface physicochemical characteristics of all final catalysts were determined using ICP-AES, N2 adsorption-desorption isotherms, XRD, SEM, and TEM. A theoretical model describing the impregnation process for the EDF extrudates, based on the Lee and Aris model, was also developed. It was concluded that following specific impregnation conditions, the egg-shell macro-distributions can be successfully predicted, in agreement with the experimental results. It was shown that the Ni/Al catalysts with an egg-shell structure had a higher H2 yield in comparison with the ones with a uniform structure. The difference in catalytic performance was attributed to the improved surface and structural properties of the egg-shell catalysts, resulting from the modified EDF technique used for their preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.