The present investigation provides an overview of the current technology related to the green diesel, from the classification and chemistry of the available biomass feedstocks to the possible production technologies and up to the final fuel properties and their effect in modern compression ignition internal combustion engines. Various biomass feedstocks are reviewed paying attention to their specific impact on the production of green diesel. Then, the most prominent production technologies are presented such as the hydro-processing of triglycerides, the upgrading of sugars and starches into C15–C18 saturated hydrocarbons, the upgrading of bio-oil derived by the pyrolysis of lignocellulosic materials and the “Biomass-to-Liquid” (BTL) technology which combines the production of syngas (H2 and CO) from the gasification of biomass with the production of synthetic green diesel through the Fischer-Tropsch process. For each of these technologies the involved chemistry is discussed and the necessary operation conditions for the maximum production yield and the best possible fuel properties are reviewed. Also, the relevant research for appropriate catalysts and catalyst supports is briefly presented. The fuel properties of green diesel are then discussed in comparison to the European and US Standards, to petroleum diesel and Fatty Acid Methyl Esters (FAME) and, finally their effect on the compression ignition engines are analyzed. The analysis concludes that green diesel is an excellent fuel for combustion engines with remarkable properties and significantly lower emissions.
The separation of hydrogen sulfide (H2S) from gas streams has significant economic and environmental repercussions for the oil and gas industries. The present work reviews H2S separation via nonreactive and reactive adsorption from various industrial gases, focusing on the most commonly used materials i.e., natural or synthetic zeolites, activated carbons, and metal oxides. In respect to cation-exchanged zeolites, attention should also be paid to parameters such as structural and performance regenerability, low adsorption temperatures, and thermal conductivities, in order to create more efficient materials in terms of H2S adsorption. Although in the literature it is reported that activated carbons can generally achieve higher adsorption capacities than zeolites and metal oxides, they exhibit poor regeneration potential. Future work should mainly focus on finding the optimum temperature, solvent concentration, and regeneration time in order to increase regeneration efficiency. Metal oxides have also been extensively used as adsorbents for hydrogen sulfide capture. Among these materials, ZnO and Cu–Zn–O have been studied the most, as they seem to offer improved H2S adsorption capacities. However, there is a clear lack of understanding in relation to the basic sulfidation mechanisms. The elucidation of these reaction mechanisms will be a toilsome but necessary undertaking in order to design materials with high regenerative capacity and structural reversibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.