Microvascular dysfunction in the heart and its association with periarteriolar fibrosis may contribute to the diastolic dysfunction seen in heart failure with preserved ejection fraction. prevents global myocardial fibrosis in a pressure overloaded left ventricle by acting via its receptor, ST2 (encoded by the gene, Il1rl1); however, whether this cytokine can also modulate periarteriolar fibrosis remains unclear. We utilized two approaches to explore the role of IL-33/ST2 in periarteriolar fibrosis. First, we studied young and old wild type mice to test the hypothesis that IL-33 and ST2 expression change with age. Second, we produced pressure overload in mice deficient in IL-33 or ST2 by transverse aortic constriction (TAC). With age, IL-33 expression increased and ST2 expression decreased. These alterations accompanied increased periarteriolar fibrosis in aged mice. Mice deficient in ST2 but not IL-33 had a significant increase in periarteriolar fibrosis following TAC compared to wild type mice. Thus, loss of ST2 signaling rather than changes in IL-33 expression may contribute to periarteriolar fibrosis during aging or pressure overload, but manipulating this pathway alone may not prevent or reverse fibrosis.
Administration of active growth differentiation factor 11 (GDF11) to aged mice can reduce cardiac hypertrophy, and low serum levels of GDF11 measured together with the related protein, myostatin (also known as GDF8), predict future morbidity and mortality in coronary heart patients. Using mice with a loxP-flanked (“floxed”) allele of Gdf11 and Myh6-driven expression of Cre recombinase to delete Gdf11 in cardiomyocytes, we tested the hypothesis that cardiac-specific Gdf11 deficiency might lead to cardiac hypertrophy in young adulthood. We observed that targeted deletion of Gdf11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation when compared with control mice carrying only the Myh6-cre or Gdf11-floxed alleles, suggesting a possible etiology for dilated cardiomyopathy. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected model. First, whole heart Gdf11 expression did not decrease in Myh6-cre; Gdf11-floxed mice, possibly because of upregulation of Gdf11 in noncardiomyocytes in the heart. Second, we observed Cre-associated toxicity, with lower body weights and increased global fibrosis, in Cre-only control male mice compared with flox-only controls, making it challenging to infer which changes in Myh6-cre;Gdf11-floxed mice were the result of Cre toxicity versus deletion of Gdf11. Third, we observed differential expression of cre mRNA in Cre-only controls compared with the cardiomyocyte-specific knockout mice, also making comparison between these two groups difficult. Thus, targeted Gdf11 deletion in cardiomyocytes may lead to left ventricular dilation without hypertrophy, but alternative animal models are necessary to understand the mechanism for these findings. NEW & NOTEWORTHY We observed that targeted deletion of growth differentiation factor 11 in cardiomyocytes does not cause cardiac hypertrophy but rather leads to left ventricular dilation compared with control mice carrying only the Myh6-cre or growth differentiation factor 11-floxed alleles. However, the mechanism underlying this finding remains unclear because of multiple confounding effects associated with the selected mouse model.
Key Points Genetic deletion of Gdf11 does not affect red blood cell formation during homeostasis or after transplant. Hematopoietic stem cell function is preserved in mice lacking Gdf11 expression within the blood lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.