Instructor Talk—noncontent language used by instructors in classrooms—is a recently defined and promising variable for better understanding classroom dynamics. Having previously characterized the Instructor Talk framework within the context of a single course, we present here our results surrounding the applicability of the Instructor Talk framework to noncontent language used by instructors in novel course contexts. We analyzed Instructor Talk in eight additional biology courses in their entirety and in 61 biology courses using an emergent sampling strategy. We observed widespread use of Instructor Talk with variation in the amount and category type used. The vast majority of Instructor Talk could be characterized using the originally published Instructor Talk framework, suggesting the robustness of this framework. Additionally, a new form of Instructor Talk—Negatively Phrased Instructor Talk, language that may discourage students or distract from the learning process—was detected in these novel course contexts. Finally, the emergent sampling strategy described here may allow investigation of Instructor Talk in even larger numbers of courses across institutions and disciplines. Given its widespread use, potential influence on students in learning environments, and ability to be sampled, Instructor Talk may be a key variable to consider in future research on teaching and learning in higher education.
Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.active learning | evidence-based teaching | science education | lecture | assessment C urrent college STEM (science, technology, engineering, and mathematics) teaching in the United States continues to be lecture-based and is relatively ineffective in promoting learning (1, 2). Undergraduate instructors continue to struggle to engage, effectively teach, and retain postsecondary students, both generally and particularly among women and students of color (3, 4). Federal analyses suggest that a 10% increase in retention of undergraduate STEM students could address anticipated STEM workforce shortfalls (5). Replacing the standard lecture format with more active teaching strategies has been shown to increase
Female aggression may be the regulator of population size in small mammals. Freely growing populations of house mice showed several differences in aggressive female behavior in the presence and the absence of a male hierarchy. Territoriality in females and not in males appeared to maintain social order and regulate population density. Certain females were seen patrolling and guarding the territory and chasing and fighting with both male and female intruders. These females did not fight amongst themselves, suggesting that they were not fighting for rank (as do the males) but for territory. Although these aggressive females produced young, the pups were neglected, and few were weaned. The non‐aggressive females were the successful breeders. Aggression by the females only occurred when there was reproduction and increased densities. Assembled females with no males present never show this aggression. The occurrence of “male‐type” behavior became most apparent when the males were removed at peak population densities. The removed males were then castrated and injected with testosterone cyprionate. Doses were increased by population cage, and therefore all males returned to each freely growing population were given the same dose. The males given oil placebo injections showed no return of a male hierarchy and the females showed high levels of aggression toward them. Males injected with testosterone cyprionate showed return of male aggression and fighting and mounting of females. But the new “dominant” females continued their patrols and chased males away from their territories and did not permit these males to mount. Male‐male fighting consisted primarily of frontal attacks to the face and roll and tumble fights. Female‐male aggression consisted primarily of attacks to the posterior region targeted at the base of the tail and the genitals of the male. The males were rarely seen attacking females and then only during mating. Females only attacked each other in defense of their territories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.