This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
Background: Alirocumab, an antibody that blocks PCSK9 (proprotein convertase subtilisin/kexin type 9), was associated with reduced major adverse cardiovascular events (MACE) and death in the ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab). In this study, higher baseline levels of low-density lipoprotein cholesterol (LDL-C) predicted greater benefit from alirocumab treatment. Recent studies indicate high polygenic risk scores (PRS) for coronary artery disease (CAD) identify individuals at higher risk who derive increased benefit from statins. We performed post hoc analyses to determine whether high PRS for CAD identifies higher-risk individuals, independent of baseline LDL-C and other known risk factors, who might derive greater benefit from alirocumab treatment. Methods: ODYSSEY OUTCOMES was a randomized, double-blind, placebo-controlled trial comparing alirocumab or placebo in 18 924 patients with acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin treatment. The primary endpoint (MACE) comprised death of CAD, nonfatal myocardial infarction, ischemic stroke, or unstable angina requiring hospitalization. A genome-wide PRS for CAD comprising 6 579 025 genetic variants was evaluated in 11 953 patients with available DNA samples. Analysis of MACE risk was performed in placebo-treated patients, whereas treatment benefit analysis was performed in all patients. Results: The incidence of MACE in the placebo group was related to PRS for CAD: 17.0% for high PRS patients (>90th percentile) and 11.4% for lower PRS patients (≤90th percentile; P <0.001); this PRS relationship was not explained by baseline LDL-C or other established risk factors. Both the absolute and relative reduction of MACE by alirocumab compared with placebo was greater in high versus low PRS patients. There was an absolute reduction by alirocumab in high versus low PRS groups of 6.0% and 1.5%, respectively, and a relative risk reduction by alirocumab of 37% in the high PRS group (hazard ratio, 0.63 [95% CI, 0.46–0.86]; P =0.004) versus a 13% reduction in the low PRS group (hazard ratio, 0.87 [95% CI, 0.78–0.98]; P =0.022; interaction P =0.04). Conclusions: A high PRS for CAD is associated with elevated risk for recurrent MACE after acute coronary syndrome and a larger absolute and relative risk reduction with alirocumab treatment, providing an independent tool for risk stratification and precision medicine.
Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes 1 – 5 . Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75 , which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes 6 , our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10−8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10−13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.
LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella-like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.