2015). Towards more robust chronologies of coastal progradation: optically stimulated luminescence ages for the coastal plain at Moruya, south-eastern Australia. The Holocene: a major interdisciplinary journal focusing on recent environmental change, 25 (3), 536-546.Towards more robust chronologies of coastal progradation: optically stimulated luminescence ages for the coastal plain at Moruya, southeastern Australia
AbstractAccurate chronologies are fundamental for detailed analysis of palaeoenvironmental conditions, archaeological reconstructions and investigations of Holocene coastal morphological changes. Chronological data enable estimation of rates of shoreline progradation, and provide appropriate context for forecasting future coastal changes. A previously reported radiocarbon chronology for the Moruya coastal plain in southeastern Australia indicated a decelerating overall rate of progradation with minimal net seaward shoreline movement in the past ~2500 years. Single-grain and multi-grain aliquot optically stimulated luminescence (OSL) analyses demonstrate that marine sands from this region have excellent luminescence characteristics. A series of OSL ages across this coastal barrier indicates a remarkably linear trend of Holocene shoreline progradation. The linear trend of seaward shoreline movement indicates that the barrier has grown at an average rate of 0.27 m/yr with successive ridge formation every ~110 years. The oldest ridge on the barrier appears to correspond to cessation of rapid post-glacial sea-level rise, and the large foredune at the seaward margin of the barrier is chronologies, in Australia and around the world, where they have been based on radiocarbon dating of shell hash.
Traditional methods for assessing coastal hazards have not typically incorporated a rigorous treatment of uncertainty. Such treatment is necessary to enable risk assessments which are now required by emerging risk based coastal zone management/planning frameworks. While unresolved issues remain, relating to the availability of sufficient data for comprehensive uncertainty assessments, this will hopefully improve in coming decades. Here, we present a modelling framework which integrates geological, engineering and economic approaches for assessing the climate change driven economic risk to coastal developments. The framework incorporates means for combining results from models that focus on the decadal to century time scales at which coasts evolve, and those that focus on the short term and seasonal time scales (storm bite and recovery). This paper demonstrates the functionality of the framework in deriving probabilistic coastal hazard lines and their subsequent use to establish an economically optimal setback line for development at a case study site; the Narrabeen-Collaroy embayment in Sydney, New South Wales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.