The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the hepatobiliary system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the hepatobiliary system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the respiratory tract of laboratory rats and mice, with color photomicrographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous developmental and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for respiratory tract lesions in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Abnormalities of fatty acid metabolism are recognized to play a significant role in human disease, but the mechanisms remain poorly understood. Long-chain acyl-CoA dehydrogenase (LCAD) catalyzes the initial step in mitochondrial fatty acid oxidation (FAO). We produced a mouse model of LCAD deficiency with severely impaired FAO. Matings between LCAD ؉͞؊ mice yielded an abnormally low number of LCAD ؉͞؊ and ؊͞؊ offspring, indicating frequent gestational loss. LCAD ؊͞؊ mice that reached birth appeared normal, but had severely reduced fasting tolerance with hepatic and cardiac lipidosis, hypoglycemia, elevated serum free fatty acids, and nonketotic dicarboxylic aciduria. Approximately 10% of adult LCAD ؊͞؊ males developed cardiomyopathy, and sudden death was observed in 4 of 75 LCAD ؊͞؊ mice. These results demonstrate the crucial roles of mitochondrial FAO and LCAD in vivo.Mitochondrial fatty acid oxidation (FAO) is the primary means by which energy is derived from metabolism of fatty acids. This process is important during periods of fasting or prolonged strenuous activity, providing as much as 80 to 90% of fatty acid-derived energy for heart and liver function (1). Mitochondrial FAO also provides acetyl-CoA for hepatic ketogenesis and the energy required for nonshivering thermogenesis by brown adipose tissue (2). The initial step in mitochondrial FAO is the ␣- dehydrogenation of the acyl-CoA ester by a family of four closely related, chain length-specific enzymes, the acyl-CoA dehydrogenases, which include verylong-chain, long-chain, medium-chain, and short-chain acylCoA dehydrogenases (VLCAD, LCAD, MCAD, and SCAD, respectively). These enzymes catalyze the same type of reaction but differ in specificity according to the chain length of their fatty acid (acyl-CoA) substrates.
Use of the dioxin toxic equivalency factor (TEF) approach in human risk assessments assumes that the combined effects of dioxin-like compounds in a mixture can be predicted based on a potency-adjusted dose-additive combination of constituents of the mixture. In this study, we evaluated the TEF approach in experimental 2-year rodent cancer bioassays with female Harlan Sprague-Dawley rats receiving 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of the three compounds. Statistically based dose–response modeling indicated that the shape of the dose–response curves for hepatic, lung, and oral mucosal neoplasms was the same in studies of the three individual chemicals and the mixture. In addition, the dose response for the mixture could be predicted from a combination of the potency-adjusted doses of the individual compounds. Finally, we showed that use of the current World Health Organization dioxin TEF values adequately predicted the increased incidence of liver tumors (hepatocellular adenoma and cholangiocarcinoma) induced by exposure to the mixture. These data support the use of the TEF approach for dioxin cancer risk assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.